मराठी

Evaluate the Following: `Tan^-1(-1/Sqrt3)+Cot^-1(1/Sqrt3)+Tan^-1(Sin(-pi/2))` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`

उत्तर

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))=tan^-1[tan(-pi/6)]+cot^-1(cot  pi/3)+tan^-1(-1)`

`=tan^-1[tan(-pi/6)]+cot^-1(cot  pi/3)+tan^-1[tan(-pi/4)]`

`=-pi/6+pi/3-pi/4`

`=-pi/12`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.06 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.06 | Q 3.4 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


`tan^-1(tan  (7pi)/6)` = ______


Evaluate:

`sin[cos^-1 (3/5)]`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Find the principal value of `sin^-1  1/sqrt(2)`


Find the principal value of cosec–1(– 1)


The principle solutions of equation tan θ = -1 are ______ 


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What will be the principal value of `sin^-1(-1/2)`?


`sin(tan^-1x), |x| < 1` is equal to


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


cos–1(cos10) is equal to ______.


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×