Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
उत्तर
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))=tan^-1[tan(-pi/6)]+cot^-1(cot pi/3)+tan^-1(-1)`
`=tan^-1[tan(-pi/6)]+cot^-1(cot pi/3)+tan^-1[tan(-pi/4)]`
`=-pi/6+pi/3-pi/4`
`=-pi/12`
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
`tan^-1(tan (7pi)/6)` = ______
Evaluate:
`sin[cos^-1 (3/5)]`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of cosec–1(– 1)
The principle solutions of equation tan θ = -1 are ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What will be the principal value of `sin^-1(-1/2)`?
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
cos–1(cos10) is equal to ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.