Advertisements
Advertisements
प्रश्न
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
उत्तर
tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
`tan^-1 (((x + 1) + (x - 1))/(1 - (x + 1)(x - 1))) = tan^-1 (4/7)`
`tan^-1 ((2x)/(1 - (x^2 - 1))) = tan^-1 (4/7)`
`tan^-1 ((2x)/(1 - x^2 + 1)) = tan^-1 (4/7)`
`tan^-1 ((2x)/(2 - x^2)) = tan^-1 (4/7)`
∴ `(2x)/(2 - x^2) = 4/7`
`(x)/(2 - x^2) = 2/7`
⇒ 7x = 2(2 – x2)
⇒ 7x = 4 – 2x2
⇒ 2x2 + 7x – 4 = 0
⇒ (x + 4) (2x – 1) = 0
⇒ x + 4 = 0 (or) 2x – 1 = 0
⇒ x = -4 (or) x = `1/2`
x = -4 is rejected, since does not satisfies the question.
∴ x = `1/2`
APPEARS IN
संबंधित प्रश्न
Find the principal values of `sin^(-1) (-1/2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The domain of the function y = sin–1 (– x2) is ______.
All trigonometric functions have inverse over their respective domains.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.