Advertisements
Advertisements
प्रश्न
Solve `tan^-1 2x + tan^-1 3x = pi/4`
उत्तर
Given tan-1 (2x) + tan-1 (3x) = `pi/4`
`tan^-1 [(2x + 3x)/(1 - (2x)(3x))] = pi/4`
`tan^-1 [(5x)/(1 - 6x^2)] = pi/4`
`(5x)/(1 - 6x^2) = tan pi/4`
`(5x)/(1 - 6x^2)` = 1
⇒ 5x = 1(1 – 6x2)
⇒ 6x2 + 5x – 1 = 0
⇒ (x + 1) (6x – 1) = 0
⇒ x + 1 = 0 (or) 6x – 1 = 0
⇒ x = -1 (or) x = `1/6`
x = -1 is rejected. It doesn’t satisfies the question.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cosec^(-1)(-sqrt2)`
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
What is the value of `sin^-1(sin (3pi)/4)`?
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`