Advertisements
Advertisements
प्रश्न
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
उत्तर
We know that tan-1 x + tan-1 y = `tan^-1 ((x + y)/(1 - xy))`
Now LHS = `tan^-1 (1/2) + tan^-1 (2/11)`
`= tan^-1 ((1/2 + 2/11)/(1 - 1/2 xx 2/11))`
`= tan^-1 (((11 + 4)/22)/(1 - 1/11))`
`= tan^-1 ((15/22)/(10/11))`
`= tan^-1 (15/22 xx 11/10)`
`= tan^-1 ((3 xx 1)/(2 xx 2))`
`= tan^-1 (3/4)` = RHS
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal value of `sec^(-1) (2/sqrt(3))`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
When `"x" = "x"/2`, then tan x is ____________.
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
If f'(x) = x–1, then find f(x)
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.