Advertisements
Advertisements
Question
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solution
We know that tan-1 x + tan-1 y = `tan^-1 ((x + y)/(1 - xy))`
Now LHS = `tan^-1 (1/2) + tan^-1 (2/11)`
`= tan^-1 ((1/2 + 2/11)/(1 - 1/2 xx 2/11))`
`= tan^-1 (((11 + 4)/22)/(1 - 1/11))`
`= tan^-1 ((15/22)/(10/11))`
`= tan^-1 (15/22 xx 11/10)`
`= tan^-1 ((3 xx 1)/(2 xx 2))`
`= tan^-1 (3/4)` = RHS
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
If sin−1 x = y, then
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
`"sin" 265° - "cos" 265°` is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
What will be the principal value of `sin^-1(-1/2)`?