English

Prove the following : sin-1(-12)+cos-1(-32)=cos-1(-12) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`

Sum

Solution

Let `sin^-1(-1/2) = α, "where" - pi/(2) ≤ α ≤ pi/(2)`

∴ sin α = `-1/2 = -sin  pi/(6)`

∴ sin α = `sin(-pi/6)`     ...[∵ sin(– θ) = – sin θ]

∴ α = `- pi/(6)               ...[∵ - pi/(2) ≤ - pi/(6) ≤ pi/(2)]`

∴ `sin^-1(-1/2) = - pi/(6)`        ...(1)

Let `cos^-1(- sqrt(3)/2)` = β, where 0 ≤ β ≤ π

∴ cos β = `- sqrt(3)/(2) = - cos  pi/(6)`

∴ cos β =  `cos(pi - pi/6)`      ...[∵ cos(π – θ) = –  cos θ]

∴ cos β = `cos  (5pi)/(6)`

∴ β = `(5pi)/(6)                      ...[∵ 0 ≤ (5pi)/(6) ≤ pi]`

∴ `cos^-1(- sqrt(3)/2) = (5pi)/(6)`   ...(2)

Let `cos^-1(- 1/2)` = ϒ,  where 0 ≤ ϒ ≤ π

∴ cos ϒ = `-(1)/(2) = - cos  pi/(3)`

∴ cos ϒ = `cos(pi - pi/3)`      ...[∵ cos(π – θ) = –  cos θ]

∴ cos ϒ = `cos  (2pi)/(3)`

∴ ϒ = `(2pi)/(3)                    ...[∵ 0 ≤ (2pi)/(3) ≤ pi]`

∴ `cos^-1(- 1/2) = (2pi)/(3)`         ...(3)

L.H.S. = `sin^-1(- 1/2) + cos^-1(- sqrt(3)/2)`

= `- pi/(6) + (5pi)/(6)`       ...[By (1) and (2)]

= `(4pi)/(6) = (2pi)/(3)`

= `cos^-1(- 1/2)`            ...[By (3)]
= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.3 [Page 103]

APPEARS IN

RELATED QUESTIONS

Find the principal value of tan−1 (−1)


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Find the principal value of `sin^-1(1/sqrt2)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: tan-1(– 1)


Find the principal value of the following: tan- 1( - √3)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate:

`sin[cos^-1 (3/5)]`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Find the principal value of `cos^-1  sqrt(3)/2`


A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The principle solutions of equation tan θ = -1 are ______ 


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


The principal value of `tan^{-1(sqrt3)}` is ______  


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


The domain of the function y = sin–1 (– x2) is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


`"cos"  2 theta` is not equal to ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


What is the value of `sin^-1(sin  (3pi)/4)`?


Find the principal value of `tan^-1 (sqrt(3))`


`sin(tan^-1x), |x| < 1` is equal to


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


cos–1(cos10) is equal to ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


sin [cot–1 (cos (tan–1 x))] = ______.


If sin–1x – cos–1x = `π/6`, then x = ______.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×