Advertisements
Advertisements
Question
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Solution
Let `sin^-1(-1/2) = α, "where" - pi/(2) ≤ α ≤ pi/(2)`
∴ sin α = `-1/2 = -sin pi/(6)`
∴ sin α = `sin(-pi/6)` ...[∵ sin(– θ) = – sin θ]
∴ α = `- pi/(6) ...[∵ - pi/(2) ≤ - pi/(6) ≤ pi/(2)]`
∴ `sin^-1(-1/2) = - pi/(6)` ...(1)
Let `cos^-1(- sqrt(3)/2)` = β, where 0 ≤ β ≤ π
∴ cos β = `- sqrt(3)/(2) = - cos pi/(6)`
∴ cos β = `cos(pi - pi/6)` ...[∵ cos(π – θ) = – cos θ]
∴ cos β = `cos (5pi)/(6)`
∴ β = `(5pi)/(6) ...[∵ 0 ≤ (5pi)/(6) ≤ pi]`
∴ `cos^-1(- sqrt(3)/2) = (5pi)/(6)` ...(2)
Let `cos^-1(- 1/2)` = ϒ, where 0 ≤ ϒ ≤ π
∴ cos ϒ = `-(1)/(2) = - cos pi/(3)`
∴ cos ϒ = `cos(pi - pi/3)` ...[∵ cos(π – θ) = – cos θ]
∴ cos ϒ = `cos (2pi)/(3)`
∴ ϒ = `(2pi)/(3) ...[∵ 0 ≤ (2pi)/(3) ≤ pi]`
∴ `cos^-1(- 1/2) = (2pi)/(3)` ...(3)
L.H.S. = `sin^-1(- 1/2) + cos^-1(- sqrt(3)/2)`
= `- pi/(6) + (5pi)/(6)` ...[By (1) and (2)]
= `(4pi)/(6) = (2pi)/(3)`
= `cos^-1(- 1/2)` ...[By (3)]
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Find the principal value of tan−1 (−1)
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
`tan^-1(tan (7pi)/6)` = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate:
`sin[cos^-1 (3/5)]`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Find the principal value of `cos^-1 sqrt(3)/2`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principle solutions of equation tan θ = -1 are ______
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `tan^{-1(sqrt3)}` is ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The domain of the function y = sin–1 (– x2) is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
`"cos" 2 theta` is not equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
What is the value of `sin^-1(sin (3pi)/4)`?
Find the principal value of `tan^-1 (sqrt(3))`
`sin(tan^-1x), |x| < 1` is equal to
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
cos–1(cos10) is equal to ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
sin [cot–1 (cos (tan–1 x))] = ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.