Advertisements
Advertisements
Question
Find the principal value of `cos^-1 sqrt(3)/2`
Solution
Let y = `cos^-1 (sqrt(3)/2)`
Where 0 ≤ y ≤ π
cos y = `sqrt(3)/2`
= `cos (pi/6)`
y = `pi/6`
∴ The principal value of `cos^-1 sqrt(3)/2 = pi/6`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate:
`sin[cos^-1 (3/5)]`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The domain of the function y = sin–1 (– x2) is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
When `"x" = "x"/2`, then tan x is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.