English

The domain of the function y = sin–1 (– x2) is ______. - Mathematics

Advertisements
Advertisements

Question

The domain of the function y = sin–1 (– x2) is ______.

Options

  • [0, 1]

  • (0, 1)

  • [–1, 1]

  • φ

MCQ
Fill in the Blanks

Solution

The domain of the function y = sin–1 (– x2) is [–1, 1].

Explanation:

y = sin–1(– x2)

⇒ siny = – x2

i.e. – 1 ≤ – x2 ≤ 1 ......(Since – 1 ≤ sin y ≤ 1)

⇒ 1 ≥ x2 ≥ – 1

⇒ 0 ≤ x2 ≤ 1

⇒ |x| ≤ 1

i.e. – 1 ≤ x ≤ 1 

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Solved Examples [Page 32]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Solved Examples | Q 32 | Page 32

RELATED QUESTIONS

Find the domain of the following function:

`f(x) = sin^-1x + sinx`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Find the principal value of the following: cos- 1`(-1/2)`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


`tan^-1(tan  (7pi)/6)` = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Evaluate:

`sin[cos^-1 (3/5)]`


Find the principal value of the following:

cosec-1 (2)


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


When `"x" = "x"/2`, then tan x is ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


What is the value of `sin^-1(sin  (3pi)/4)`?


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


If f'(x) = x–1, then find f(x)


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×