Advertisements
Advertisements
Question
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Solution
`(1 - cosθ)/(1 + cosθ) = (2sin^2(θ/2))/(2cos^2(θ/2)`
= `tan^2(θ/2)`
∴ `sqrt((1 - cosθ)/(1 + cosθ)) = sqrt(tan^2(θ/2)`
= `tan(θ/2)`
∴ L.H.S. = `tan^-1[sqrt((1 - cosθ)/(1 + cosθ))]`
= `tan^-1[tan(θ/2)]`
= `θ/(2)` ...[∵ tan–1(tan θ) = θ]
= R.H.S.
APPEARS IN
RELATED QUESTIONS
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of tan−1 (−1)
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the set of values of `cosec^-1(sqrt3/2)`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
The principal value of sin−1`(1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate:
`sin[cos^-1 (3/5)]`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Find the principal value of the following:
tan-1 (-1)
Find the principal value of the following:
cosec-1 (2)
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Find the principal value of `tan^-1 (sqrt(3))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
The principle solutions of equation tan θ = -1 are ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
sin[3 sin-1 (0.4)] = ______.
Which of the following function has period 2?
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The principal value of `tan^{-1(sqrt3)}` is ______
The value of `sin^-1(cos (53pi)/5)` is ______
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1/sqrt2)`
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
3 tan-1 a is equal to ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
Domain and Rariges of cos–1 is:-
What is the principal value of cosec–1(2).
`sin(tan^-1x), |x| < 1` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If sin–1x – cos–1x = `π/6`, then x = ______.