English

If tan−1((x−1)/(x−2))+cot−1((x+2)/(x+1))=π4; - Mathematics and Statistics

Advertisements
Advertisements

Question

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `

Solution

`"Given ",tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4`

`tan^-1((x-1)/(x-2))+tan^-1((x+1)/(x+2))=pi/4;`

`tan^-1((x-1)/(x-2))=pi/4-tan^-1((x+1)/(x+2))`

`=tan^-1(1)-tan^-1((x+1)/(x+2))`

`=tan^-1[(1-(x+1)/(x+2))/(1+(x+1)/(x+2))]  ........[because tan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`

`=tan^-1[(x+2-x-1)/(x+2+x+1)]`

`tan^-1((x-1)/(x-2))=tan^-1(1/(2x+3))`

`(x-1)/(x-2)=1/(2x+3)`

`(x-1)(2x+3)=x-2`

`2x^2-1=0`

`2x^2=1`

`x^2=1/2`

`x=+-1/sqrt2`

 

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

RELATED QUESTIONS

Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the principal value of `cot^(-1) (sqrt3)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Find the principal value of the following: cos- 1`(-1/2)`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Find the principal solutions of the following equation:
tan 5θ = -1


sin−1x − cos−1x = `pi/6`, then x = ______


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

tan-1 (-1)


Find the principal value of the following:

cosec-1 (2)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.


`"sin"^-1 (-1/2)`


`"sin"^-1 (1/sqrt2)`


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


Which of the following functions is inverse of itself?


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


Domain and Rariges of cos–1 is:-


Find the value, if sin–1x = y, then `->`:-


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×