हिंदी

If tan−1((x−1)/(x−2))+cot−1((x+2)/(x+1))=π4; - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `

उत्तर

`"Given ",tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4`

`tan^-1((x-1)/(x-2))+tan^-1((x+1)/(x+2))=pi/4;`

`tan^-1((x-1)/(x-2))=pi/4-tan^-1((x+1)/(x+2))`

`=tan^-1(1)-tan^-1((x+1)/(x+2))`

`=tan^-1[(1-(x+1)/(x+2))/(1+(x+1)/(x+2))]  ........[because tan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`

`=tan^-1[(x+2-x-1)/(x+2+x+1)]`

`tan^-1((x-1)/(x-2))=tan^-1(1/(2x+3))`

`(x-1)/(x-2)=1/(2x+3)`

`(x-1)(2x+3)=x-2`

`2x^2-1=0`

`2x^2=1`

`x^2=1/2`

`x=+-1/sqrt2`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (October)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of tan−1 (−1)


Find the principal value of `cot^(-1) (sqrt3)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the principal value of `cosec^(-1)(-sqrt2)`


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Find the value of the following:

If sin−1 x = y, then


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


`sin^-1  1/2-2sin^-1  1/sqrt2`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: tan-1(– 1)


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Find the principal solutions of the following equation:

cot 2θ = 0.


The principal value of cos−1`(-1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Evaluate:

`sin[cos^-1 (3/5)]`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Find the principal value of cosec–1(– 1)


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


Which of the following function has period 2?


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of y = cos–1(x2 – 4) is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.


`"sin"^-1 (1/sqrt2)`


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


3 tan-1 a is equal to ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


What is the value of `sin^-1(sin  (3pi)/4)`?


`sin(tan^-1x), |x| < 1` is equal to


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


What is the values of `cos^-1 (cos  (7pi)/6)`


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


sin [cot–1 (cos (tan–1 x))] = ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×