Advertisements
Advertisements
प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
उत्तर
`"Given ",tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4`
`tan^-1((x-1)/(x-2))+tan^-1((x+1)/(x+2))=pi/4;`
`tan^-1((x-1)/(x-2))=pi/4-tan^-1((x+1)/(x+2))`
`=tan^-1(1)-tan^-1((x+1)/(x+2))`
`=tan^-1[(1-(x+1)/(x+2))/(1+(x+1)/(x+2))] ........[because tan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`
`=tan^-1[(x+2-x-1)/(x+2+x+1)]`
`tan^-1((x-1)/(x-2))=tan^-1(1/(2x+3))`
`(x-1)/(x-2)=1/(2x+3)`
`(x-1)(2x+3)=x-2`
`2x^2-1=0`
`2x^2=1`
`x^2=1/2`
`x=+-1/sqrt2`
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
If sin−1 x = y, then
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
`sin^-1 1/2-2sin^-1 1/sqrt2`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of cos−1`(-1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate:
`sin[cos^-1 (3/5)]`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Find the principal value of cosec–1(– 1)
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
Which of the following function has period 2?
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of y = cos–1(x2 – 4) is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"sin"^-1 (1/sqrt2)`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
3 tan-1 a is equal to ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
What is the value of `sin^-1(sin (3pi)/4)`?
`sin(tan^-1x), |x| < 1` is equal to
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
Find the value of `sin(2cos^-1 sqrt(5)/3)`.