Advertisements
Advertisements
प्रश्न
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
उत्तर
Let `cos^-1(1/2)` = α, where 0 ≤ α ≤ π
∴ cos α = `1/2 = cos (pi)/(3)`
∴ α = `pi/(3) ...[∵ 0 < pi/(3) < pi]`
∴ `cos^-1(1/2) = pi/(3)` ...(1)
Let `sin^-1(1/2) = β, "where" (-pi)/(2) ≤ β ≤ pi/(2)`
∴ sin β = `(1)/(2) = sin (pi)/(6)`
∴ β = `pi/(6) ...[∵ (-pi)/(2) ≤ pi/(6) ≤ pi/(2)]`
∴ `sin^-1(1/2) = pi/(6)` ...(2)
`cos^-1(1/2) = pi/(3) and sin^-1(1/2) = pi/(6)`
∴ `cos^-1(1/2) + 2sin^-1(1/2)`
= `pi/(3) + 2(pi/6)`
= `pi/(3) + pi/(3)`
= `(2pi)/(3)`.
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of cosec−1 (2)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
`sin^-1{cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
sin−1x − cos−1x = `pi/6`, then x = ______
The principal value of sin−1`(1/2)` is ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate:
`sin[cos^-1 (3/5)]`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of cosec–1(– 1)
Find the principal value of `tan^-1 (sqrt(3))`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
Which of the following function has period 2?
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of cot (- 1110°) is equal to ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"sin" 265° - "cos" 265°` is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (-1/2)`
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
3 tan-1 a is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
What is the principal value of cosec–1(2).
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
cos–1(cos10) is equal to ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
Solve for x:
5tan–1x + 3cot–1x = 2π