Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
उत्तर
Let tan- 1(1) = α, where `(-pi)/(2) < α < pi/(2)`
∴ tan α = 1 = `tan pi/(4)`
∴ α = `pi/(4) ...[∵ (-pi)/(2) < pi/(4) < pi/(2)]`
∴ tan– 1(1) = `pi/(4)` ...(1)
Let `cos^-1(1/2)` = β, where 0 ≤ β ≤ π
∴ cos β = `1/2 = cos (pi)/(3)`
∴ β = `pi/(3) ...[∵ 0 < pi/(3) < pi]`
∴ `cos^-1(1/2) = pi/(3)` ...(2)
Let `sin^-1(1/2) = γ, "where" (-pi)/(2) ≤ γ ≤ pi/(2)`
∴ sin γ = `(1)/(2) = sin (pi)/(6)`
∴ γ = `pi/(6) ...[∵ (-pi)/(2) ≤ pi/(6) ≤ pi/(2)]`
∴ `sin^-1(1/2) = pi/(6)` ...(3)
∴ `tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
= `pi/(4) + pi/(3) + pi/(6)` ...[By (1), (2) and (3)]
= `(3pi + 4pi + 2pi)/(12)`
= `(9pi)/(12)`
= `(3pi)/(4)`.
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of tan−1 (−1)
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the domain of the following function:
`f(x)=sin^-1x^2`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
`tan^-1(tan (7pi)/6)` = ______
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of cosec–1(– 1)
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
sin[3 sin-1 (0.4)] = ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `tan^{-1(sqrt3)}` is ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of cot (- 1110°) is equal to ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
The domain of the function y = sin–1 (– x2) is ______.
The domain of y = cos–1(x2 – 4) is ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`"cos" 2 theta` is not equal to ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"sin"^-1 (-1/2)`
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Which of the following functions is inverse of itself?
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If f'(x) = x–1, then find f(x)
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`