Advertisements
Advertisements
प्रश्न
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
उत्तर
Let `sin^-1(3/5) = x, cos^-1(12/13) = y and sin^-1(56/65)` = z.
Then `sin x = (3)/(5), "where" 0 < x < pi/(2)`
cos y = `(12)/(13), "where" 0 < y < pi/(2)`
and sin z = `(56)/(65), "where" 0 < z < pi/(2)`
∴ cos x > 0, sin y > 0
Finding sin x, cos x
Now, cos x = `sqrt(1 - sin^2 x)`
= `sqrt(1 - ((3)/(5))^2 `
= `sqrt(1 - (9)/(25)` = `sqrt(16/25) = (4)/(5)`
Finding sin y, cos y
sin y = `sqrt(1 - cos^2y)`
= `sqrt(1 - ((12)/(13))^2`
= `sqrt(1 - (144)/(169)` = `sqrt(25/169) = (5)/(13)`
We know that
`sin(x + y) = sin x cos y + cos x sin y`
= `(3/5) "x" (12/13) + (4/5) "x" (5/13)`
= `(36)/(65) + (20)/(65) = (56)/(65)`
`∴ sin(x + y) = (56)/(65)`
`∴ x + y = sin^-1 (56)/(65)`
Hence, `sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`.
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `sec^(-1) (2/sqrt(3))`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of cos−1`(-1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
cosec-1 (2)
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of cosec–1(– 1)
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1/sqrt2)`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
3 tan-1 a is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Which of the following functions is inverse of itself?
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Find the value, if sin–1x = y, then `->`:-
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
cos–1(cos10) is equal to ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.