Advertisements
Advertisements
प्रश्न
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
उत्तर
L.H.S. = cot−1(7) + 2 cot−1(3)
= cot–1(7) + cot–1(3) + cot–1(3)
= `pi/2 -tan^-1(7) + pi/2 - tan^-1(3) + pi/2 - tan^-1(3)` .......`[∵ tan^(−1)x + cot^(−1)x = pi/2]`
= `(3pi)/2 - [pi + tan^-1 ((7 + 3)/(1 - 7 xx 3)) + tan^-1(3)]` .......`[∵ tan^(-1)x + tan^(-1)y = pi + tan^(-1) (x + y)/(1 - xy), "if" x, y > 0 and xy > 1]`
= `(3pi)/2 - pi - [tan^-1 (10/-20) + tan^-1(3)]`
= `pi/2 - [tan^-1 (1/2) + tan^-1(3)]`
= `pi/2 - [tan^-1(3) - tan^-1(1/2)]` .......`[∵ tan^-1(-x) = -tan^-1(x)]`
= `pi/2 - [tan^-1((3 - 1/2)/(1 + (3)(1/2)))]`
= `pi/2 - [tan^-1((5/2)/(5/2))]`
= `pi/2 - tan^-1(1)`
= `pi/2 - pi/4`
= `pi/4`
= R.H.S.
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cot^(-1) (sqrt3)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the domain of `f(x)=cotx+cot^-1x`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: cosec- 1(2)
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
sin−1x − cos−1x = `pi/6`, then x = ______
The principal value of sin−1`(1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Evaluate:
`sin[cos^-1 (3/5)]`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of `sec^-1 (- sqrt(2))`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The principal value of `tan^{-1(sqrt3)}` is ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
When `"x" = "x"/2`, then tan x is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"sin"^-1 (-1/2)`
`"tan"^-1 (sqrt3)`
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
Which of the following functions is inverse of itself?
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
What is the value of `sin^-1(sin (3pi)/4)`?
What will be the principal value of `sin^-1(-1/2)`?
Find the value, if sin–1x = y, then `->`:-
Values of tan–1 – sec–1(–2) is equal to
`sin(tan^-1x), |x| < 1` is equal to
what is the value of `cos^-1 (cos (13pi)/6)`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f'(x) = x–1, then find f(x)
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If cos–1 x > sin–1 x, then ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.