हिंदी

Prove that cot−1(7) + 2 cot−1(3) = π4 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that cot−1(7) + 2 cot−1(3) = `pi/4`

योग

उत्तर

L.H.S. = cot−1(7) + 2 cot−1(3) 

= cot–1(7) + cot–1(3) + cot–1(3)

= `pi/2 -tan^-1(7) + pi/2 - tan^-1(3) + pi/2 - tan^-1(3)`     .......`[∵ tan^(−1)x + cot^(−1)x = pi/2]`

= `(3pi)/2 - [pi + tan^-1 ((7 + 3)/(1 - 7 xx 3)) + tan^-1(3)]`    .......`[∵ tan^(-1)x + tan^(-1)y = pi + tan^(-1)  (x + y)/(1 - xy), "if"  x, y > 0 and xy > 1]`

= `(3pi)/2 - pi - [tan^-1 (10/-20) + tan^-1(3)]`

= `pi/2 - [tan^-1 (1/2) + tan^-1(3)]`

= `pi/2 - [tan^-1(3) - tan^-1(1/2)]`   .......`[∵ tan^-1(-x) = -tan^-1(x)]`

= `pi/2 -  [tan^-1((3 - 1/2)/(1 + (3)(1/2)))]`

= `pi/2 - [tan^-1((5/2)/(5/2))]`

= `pi/2 - tan^-1(1)`

= `pi/2 - pi/4`

= `pi/4`

= R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Trigonometric Functions - Short Answers II

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of cosec−1 (2)


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the principal value of `cot^(-1) (sqrt3)`


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Find the domain of `f(x)=cotx+cot^-1x`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


Find the principal value of the following: cosec- 1(2)


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


sin−1x − cos−1x = `pi/6`, then x = ______


The principal value of sin−1`(1/2)` is ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Evaluate:

`sin[cos^-1 (3/5)]`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Evaluate:

`cos[tan^-1 (3/4)]`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


Find the principal value of `sec^-1 (- sqrt(2))`


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


The principal value of `tan^{-1(sqrt3)}` is ______  


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


`tan[2tan^-1 (1/3) - pi/4]` = ______.


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


`cos^-1  4/5 + tan^-1  3/5` = ______.


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


When `"x" = "x"/2`, then tan x is ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


`"sin"^-1 (-1/2)`


`"tan"^-1 (sqrt3)`


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


Which of the following functions is inverse of itself?


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


What is the value of `sin^-1(sin  (3pi)/4)`?


What will be the principal value of `sin^-1(-1/2)`?


Find the value, if sin–1x = y, then `->`:-


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


what is the value of `cos^-1 (cos  (13pi)/6)`


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If f'(x) = x–1, then find f(x)


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


sin [cot–1 (cos (tan–1 x))] = ______.


If cos–1 x > sin–1 x, then ______.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×