हिंदी

In ∆ABC, prove that cos2A-cos2Ba+b+cos2B-cos2Cb+c+cos2C-cos2Ac+a = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0

योग

उत्तर

In ∆ABC by sine rule, we have

`(sin"A")/"a" = (sin"B")/"b" = (sin"C")/"c"` = k

∴ sin A = ka, sin B = kb, sin C = kc

L.H.S. = `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")`

= `((1 - sin^2"A") - (1 - sin^2"B"))/("a" + "b") + ((1 - sin^2"B") - (1 - sin^2"C"))/("b" + "c") + ((1 - sin^2"C") - (1 - sin^2"A"))/("c" + "a")`

= `(sin^2"B" - sin^2"A")/("a" + "b") + (sin^2"C" - sin^2"B")/("b" + "c") + (sin^2"A" - sin^2"C")/("c" + "a")`

= `("k"^2"b"^2 - "k"^2"a"^2)/("a" + "b") + ("k"^2"c"^2 - ""^2"b"^2)/("b" + "c") + ("k"^2"a"^2 - "k"^2"c"^2)/("c" + "a")`

= `("k"^2("b" - "a")("b" + "a"))/("a" + "b") + ("k"^2("c" - "b")("c" + "b"))/("b" + "c") + ("k"^2("a" - "c")("a" + "c"))/("c" + "a")`

= k2(b − a + c − b + a − c)

= 0

= R.H.S.

∴ `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Trigonometric Functions - Long Answers III

संबंधित प्रश्न

In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`


In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.


The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`

 


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


 In , ΔABC with usual notations prove that

(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(3/4, (3pi)/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(0, 1/2)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(1, - sqrt(3))`


In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any ΔABC, prove the following:

`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`


In any Δ ABC, prove the following:

a2 sin (B - C) = (b2 - c2) sin A.


In any Δ ABC, prove the following:

ac cos B - bc cos A = a2 - b2


In any Δ ABC, prove the following:

`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`


In any Δ ABC, prove the following:

`("b" - "c")/"a" = (tan  "B"/2 - tan  "C"/2)/(tan  "B"/2 +tan  "C"/2)`


In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.


In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.


In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.


Show that

`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`


Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]


Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.


If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.


State whether the following equation has a solution or not?

cos 2θ = `1/3`


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.


In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.


In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, prove that ac cos B − bc cos A = a2 − b2 


In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.


In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled


In ∆ABC, prove that `sin  ((A - B)/2) = ((a - b)/c) cos  C/2` 


In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0


In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.


In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.


If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______ 


In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______ 


If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______ 


If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.


If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.


If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.


In a triangle ABC, b = `sqrt3`, c = 1 and ∠A = 30°, then the largest angle of the triangle is ______ 


In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.


In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.


If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.


In ΔABC, `(a - b)^2 cos^2  C/2 + (a + b)^2 sin^2  C/2` is equal to ______.


In any ΔABC, prove that:

(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.


The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.


In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×