हिंदी

Solve the triangle in which a = (3+1), b = (3-1) and ∠C = 60°. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.

योग

उत्तर

Given: a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°

By cosine rule,

c2 = a2 + b2 - 2ab cos C

`= (sqrt3 + 1)^2 + (sqrt3 - 1)^2 - 2(sqrt3 + 1)(sqrt3 - 1) cos 60^circ`

= 3 + 1 + `2sqrt3` + 3 + 1 - `2sqrt3` - 2(3 - 1)`(1/2)`

= 8 - 2 = 6

∴ c = `sqrt6`      ....[∵ c > 0]

By sine rule,

`"a"/("sin A") = "b"/("sin B") = "c"/("sin C")`

∴ `(sqrt3 + 1)/("sin A") = (sqrt3 - 1)/("sin B") = sqrt6/("sin" 60^circ)`

∴ `(sqrt3 + 1)/("sin A") = (sqrt3 - 1)/("sin B") = sqrt6/(sqrt3//2) = 2sqrt2`

∴ sin A = `(sqrt3 + 1)/(2sqrt2) and sin "B" = (sqrt3 - 1)/(2sqrt2)`

∴ `sin "A" = sqrt3/(2sqrt2) + 1/(2sqrt2) and sin "B" = sqrt3/(2sqrt2) - 1/(2sqrt2)`

∴ sin A = `sqrt3/2 xx 1/sqrt2 + 1/2 xx 1/sqrt2`

∴ and sin B = `sqrt3/2 xx 1/sqrt2 - 1/2 xx 1/sqrt2`

∴ sin A = sin 60° cos 45° + cos 60° sin 45° and
sin B = sin 60° cos 45° - cos 60° sin 45°

∴ sin A = sin (60° + 45°) = sin 105°

and sin B = sin (60° - 45°) = sin 15°

∴ A = 105° and B = 15°

Hence, A = 105°, B = 15° and C = `sqrt6` units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Miscellaneous exercise 3 [पृष्ठ १०९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 10 | पृष्ठ १०९

संबंधित प्रश्न

In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.


In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.

(A) `1/5`

(B) `sqrt(1/5)`

(C) `4/5`

(D) `2/5`


The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`

 


The principal solutions of cot x = -`sqrt3`  are .................


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


 In , ΔABC with usual notations prove that

(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(sqrt(2), pi/4)`


Find the Cartesian coordinates of the point whose polar coordinates are :

`(4,  pi/2)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(sqrt(2), sqrt(2))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(1, - sqrt(3))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(3/2, (3√3)/2)`.


In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.


In any Δ ABC, prove the following:

a sin A - b sin B = c sin (A - B)


In any ΔABC, prove the following:

`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`


In any Δ ABC, prove the following:

a2 sin (B - C) = (b2 - c2) sin A.


In any Δ ABC, prove the following:

ac cos B - bc cos A = a2 - b2


In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.


In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.


Show that `2 sin^-1 (3/5) = tan^-1(24/7)`


Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]


Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.


In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.


In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, prove that ac cos B − bc cos A = a2 − b2 


In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B


Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`


In ∆ABC, prove that `("b" - "c")^2 cos^2 ("A"/2) + ("b" + "c")^2 sin^2 ("A"/2)` = a2 


In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled


In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


In a ΔABC if 2 cos C = sin B · cosec A, then ______.


In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.


In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.


In Δ ABC, with the usual notations, if `(tan  "A"/2)(tan  "B"/2) = 3/4` then a + b = ______.


In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______ 


In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______


The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.


In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.


If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.


If in ΔABC, `sin  "B"/2 sin  "C"/2 = sin  "A"/2` and 2s is the perimeter of the triangle, then s is ______.


In a triangle ABC, b = `sqrt3`, c = 1 and ∠A = 30°, then the largest angle of the triangle is ______ 


In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.


In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.


If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is  ______.


In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In any ΔABC, prove that:

(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.


If in ΔABC, `sin  A/2 * sin  C/2 = sin  B/2` and 2s is the perimeter of the triangle, then s = ______.


The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×