Advertisements
Advertisements
प्रश्न
Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`
उत्तर
(r, θ) = `(4, pi/3)`
Using x = r cos θ and y = r sin θ, where (x, y) are the required Cartesian co-ordinates, we get
x = `4 cos (pi/3)` and y = `4 sin (pi/3)`
∴ x = `4(1/2)` and y = `4(sqrt(3)/2)`
∴ x = 2 and y = `2sqrt(3)`
∴ The required Cartesian co-ordinates are `(2, 2sqrt(3))`.
APPEARS IN
संबंधित प्रश्न
In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.
(A) `1/5`
(B) `sqrt(1/5)`
(C) `4/5`
(D) `2/5`
With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2
In , ΔABC prove that
`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(sqrt(2), pi/4)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(3/4, (3pi)/4)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(1/2, (7pi)/3)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(0, 1/2)`
Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.
In any Δ ABC, prove the following:
a sin A - b sin B = c sin (A - B)
In any ΔABC, prove the following:
`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`
In any Δ ABC, prove the following:
a2 sin (B - C) = (b2 - c2) sin A.
In any Δ ABC, prove the following:
ac cos B - bc cos A = a2 - b2
In any Δ ABC, prove the following:
`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`
In any Δ ABC, prove the following:
`("b" - "c")/"a" = (tan "B"/2 - tan "C"/2)/(tan "B"/2 +tan "C"/2)`
In Δ ABC, if ∠C = 90°, then prove that sin (A - B) = `("a"^2 - "b"^2)/("a"^2 + "b"^2)`
In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.
Show that `2 sin^-1 (3/5) = tan^-1(24/7)`
If sin `(sin^-1 1/5 + cos^-1 x) = 1`, then find the value of x.
If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.
State whether the following equation has a solution or not?
cos 2θ = `1/3`
In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.
If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______
In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2
With usual notations, prove that `(cos "A")/"a" + (cos "B")/"b" + (cos "C")/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`
In ∆ABC, prove that `("b" - "c")^2 cos^2 ("A"/2) + ("b" + "c")^2 sin^2 ("A"/2)` = a2
In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.
In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0
In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0
In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.
In a ΔABC if 2 cos C = sin B · cosec A, then ______.
With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.
In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.
In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.
In a ΔABC, `(sin "C"/2)/(cos(("A" - "B")/2))` = ______
If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______
If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.
The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.
If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
In ΔABC, if `"a" cos^2 "C"/2 + "c" cos^2 "A"/2 = (3"b")/2`, then a, b, c are in ______.
In a triangle ABC, b = `sqrt3`, c = 1 and ∠A = 30°, then the largest angle of the triangle is ______
In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.
In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.
Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.
In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.
The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.
Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)
In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.
If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.
In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.
In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.
In ΔABC, `(a - b)^2 cos^2 C/2 + (a + b)^2 sin^2 C/2` is equal to ______.
In any ΔABC, prove that:
(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.
If in ΔABC, `sin A/2 * sin C/2 = sin B/2` and 2s is the perimeter of the triangle, then s = ______.
In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.
If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.