Advertisements
Advertisements
प्रश्न
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(3/4, (3pi)/4)`
उत्तर
Here, r = `3/4` and θ = `(3pi)/(4)`
Let the cartesian coordinates be (x, y)
Then,
x = `r cos θ = 3/4 cos (3pi)/(4) = 3/4 cos(pi - pi/4)`
= `-3/4 cos pi/(4) = -3/4 xx 1/sqrt(2) = - 3/(4sqrt(2))`
y = `r sin θ = 3/4sin (3pi)/(4) = (3)/(4)sin(pi - pi/4)`
= `(3)/(4)sin pi/(4) = (3)/(4) xx (1)/sqrt(2) = 3/(4sqrt(2))`
∴ The cartesian coordinates of the given point are `(- 3/(4sqrt(2)), (3)/(4sqrt(2)))`.
संबंधित प्रश्न
In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`
In any ΔABC if a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.
In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot C/2`
In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.
If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to
(A) `1/sqrt5`
(B) `1/sqrt10`
(C) `1/sqrt15`
(D) `1/(2sqrt5)`
In ,Δ ABC with usual notations prove that
b2 = c2 +a2 - 2 ca cos B
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(sqrt(2), sqrt(2))`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(1, - sqrt(3))`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(3/2, (3√3)/2)`.
In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.
Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.
In any Δ ABC, prove the following:
a2 sin (B - C) = (b2 - c2) sin A.
In any Δ ABC, prove the following:
ac cos B - bc cos A = a2 - b2
In any Δ ABC, prove the following:
`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`
In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot "B"/2, cot "C"/2` are also in A.P.
In Δ ABC, if ∠C = 90°, then prove that sin (A - B) = `("a"^2 - "b"^2)/("a"^2 + "b"^2)`
In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.
With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C
Show that
`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`
Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.
If sin `(sin^-1 1/5 + cos^-1 x) = 1`, then find the value of x.
If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
In ∆ABC, prove that ac cos B − bc cos A = a2 − b2
In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2
Find the polar co-ordinates of point whose Cartesian co-ordinates are `(1, sqrt(3))`
In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`
In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled
In ∆ABC, prove that `sin ((A - B)/2) = ((a - b)/c) cos C/2`
In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0
In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?
In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.
In a ΔABC, c2 sin 2B + b2 sin 2C = ?
With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.
In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.
In a ΔABC, `(sin "C"/2)/(cos(("A" - "B")/2))` = ______
In a ΔABC, 2ab sin`((A + B - C)/2)` = ______
If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______
If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.
The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.
In ΔABC, `(sin(B - C))/(sin(B + C))` = ______
In Δ ABC, with the usual notations, if `(tan "A"/2)(tan "B"/2) = 3/4` then a + b = ______.
In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______
If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______
In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.
If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.
If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.
If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is ______.
In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
If in ΔABC, `sin "B"/2 sin "C"/2 = sin "A"/2` and 2s is the perimeter of the triangle, then s is ______.
In ΔABC, if `"a" cos^2 "C"/2 + "c" cos^2 "A"/2 = (3"b")/2`, then a, b, c are in ______.
In a triangle ABC, b = `sqrt3`, c = 1 and ∠A = 30°, then the largest angle of the triangle is ______
In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.
In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.
The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.
Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)
If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.
In any ΔABC, prove that:
(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.
If in ΔABC, `sin A/2 * sin C/2 = sin B/2` and 2s is the perimeter of the triangle, then s = ______.
In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.
If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.