हिंदी

Find the polar co-ordinates of the point whose Cartesian co-ordinates are. (1,-3) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(1, - sqrt(3))`

योग

उत्तर

Here x = 1 and y = `- sqrt(3)`

∴ The point lies in the fourth quadrant.

Let the polar coordinates be (r, θ).

Then r2 = x2 + y2 = (1)2 + `(- sqrt(3))^2` = 1 + 3 = 4

∴ r = 2        ...[ ∵ r > 0]

`cos θ = x/r = (1)/(2)`

and `sin θ = y/r = - sqrt(3)/(2)`

∴ tan θ = `- sqrt(3)`

Since, the point lies in the fourth quadrant and 0 ≤ θ < 2π

tan θ = `- sqrt(3) = - tan  π/3`

= `tan(2π - π/3)`    ...[ ∵ tan(2π – θ) = –tan θ]

= `tan  (5π)/3`

∴ θ = `(5π)/3`

∴ The polar coordinates of the given point are `(2, (5π)/3)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise 3.2 [पृष्ठ ८८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Exercise 3.2 | Q 2.3 | पृष्ठ ८८

संबंधित प्रश्न

In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`


In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot  C/2`


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.

(A) `1/5`

(B) `sqrt(1/5)`

(C) `4/5`

(D) `2/5`


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(3/4, (3pi)/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(sqrt(2), sqrt(2))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(3/2, (3√3)/2)`.


In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.


In any Δ ABC, prove the following:

a2 sin (B - C) = (b2 - c2) sin A.


In any Δ ABC, prove the following:

ac cos B - bc cos A = a2 - b2


In any Δ ABC, prove the following:

`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`


In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.


In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


Show that

`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`


If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.


State whether the following equation has a solution or not?

cos 2θ = `1/3`


In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.


In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2 


Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`


In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled


If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.


In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0


In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0


In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


In a ΔABC if 2 cos C = sin B · cosec A, then ______.


With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.


In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.


In a ΔABC, 2ab sin`((A + B - C)/2)` = ______


If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.


In Δ ABC, with the usual notations, if `(tan  "A"/2)(tan  "B"/2) = 3/4` then a + b = ______.


In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______ 


If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______ 


In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______


If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.


In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.


If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.


If in ΔABC, `sin  "B"/2 sin  "C"/2 = sin  "A"/2` and 2s is the perimeter of the triangle, then s is ______.


In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.


In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.


If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is  ______.


In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)


In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.


In ΔABC, `(a - b)^2 cos^2  C/2 + (a + b)^2 sin^2  C/2` is equal to ______.


In any ΔABC, prove that:

(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.


In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×