हिंदी

If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.

योग

उत्तर

A, B, C are in A.P.

∴ A + C = 2B

We know that A + B + C = 180°

∴ 2B + B = 180°

∴ 3B = 180°

∴ ∠B = 60°  .......(i)

Also, it is given that sides a, b, c are in G.P.

∴ ac = b2  .......(ii)

Consider, cos B = `("a"^2 + "c"^2 - "b"^2)/(2"ac")`  .......[By cosine rule]

∴ cos(60°) = `("a"^2 + "c"^2 - "b"^2)/(2"b"^2)`  .......[From (i) and (ii)]

∴ `1/2 = ("a"^2 + "c"^2 - "b"^2)/(2"b"^2)`

∴ b2 = a2 + c2 – b2

∴ a2 + c2 = 2b2

∴ a2, b2, c2 are in A.P.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Trigonometric Functions - Short Answers II

संबंधित प्रश्न

In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`


In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.

(A) `1/5`

(B) `sqrt(1/5)`

(C) `4/5`

(D) `2/5`


The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`

 


If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to

(A) `1/sqrt5`

(B) `1/sqrt10`

(C) `1/sqrt15`

(D) `1/(2sqrt5)`


With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2


The principal solutions of cot x = -`sqrt3`  are .................


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(1, - sqrt(3))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(3/2, (3√3)/2)`.


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any Δ ABC, prove the following:

a sin A - b sin B = c sin (A - B)


In any Δ ABC, prove the following:

a2 sin (B - C) = (b2 - c2) sin A.


In any Δ ABC, prove the following:

`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`


In any Δ ABC, prove the following:

`("b" - "c")/"a" = (tan  "B"/2 - tan  "C"/2)/(tan  "B"/2 +tan  "C"/2)`


In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.


In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.


In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.


Show that `2 sin^-1 (3/5) = tan^-1(24/7)`


Show that

`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`


Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]


Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.


If sin `(sin^-1  1/5 + cos^-1 x) = 1`, then find the value of x.


If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.


State whether the following equation has a solution or not?

cos 2θ = `1/3`


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.


In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, prove that ac cos B − bc cos A = a2 − b2 


In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2 


With usual notations, prove that `(cos "A")/"a" + (cos "B")/"b" + (cos "C")/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`


In ∆ABC, prove that `("b" - "c")^2 cos^2 ("A"/2) + ("b" + "c")^2 sin^2 ("A"/2)` = a2 


In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?


In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


In a ΔABC if 2 cos C = sin B · cosec A, then ______.


With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.


In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.


In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.


In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.


In a ΔABC, 2ab sin`((A + B - C)/2)` = ______


If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


In ΔABC, `(sin(B - C))/(sin(B + C))` = ______


In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______ 


In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______


If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.


If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.


If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is ______.


If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.


In ΔABC, `cos"A"/"a" = cos"B"/"b"  cos"C"/"c"`. If a = `1/sqrt(6)`, then the area of the triangle is ______.


If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.


In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.


Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.


If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is  ______.


In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.


In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.


In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.


In ΔABC, `(a - b)^2 cos^2  C/2 + (a + b)^2 sin^2  C/2` is equal to ______.


If in ΔABC, `sin  A/2 * sin  C/2 = sin  B/2` and 2s is the perimeter of the triangle, then s = ______.


The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.


In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×