Advertisements
Advertisements
प्रश्न
In any Δ ABC, prove the following:
`("b" - "c")/"a" = (tan "B"/2 - tan "C"/2)/(tan "B"/2 +tan "C"/2)`
उत्तर
By sine rule,
`"a"/"sin A" = "b"/"sin B" = "c"/"sin C"` = k
∴ a = k sin A, b = k sin B, c = k sin C
LHS = `("b" - "c")/"a"`
`= ("k sin B - k sin C")/"k sin A"`
`= ("sin B - sin C")/"sin A"`
`= ("sin B - sin C")/(sin {pi - ("B" + "C")}) ....[because "A + B + C" = pi]`
`= ("sin B - sin C")/(sin ("B + C"))`
`= (2 cos (("B + C")/2). sin (("B" - "C")/2))/(2 sin (("B + C")/2). cos (("B" + "C")/2))`
`= (sin ("B - C")/2)/(sin ("B" + "C")/2)`
`= sin("B"/2 - "C"/2)/sin ("B"/2 + "C"/2)`
`= (sin "B"/2 cos "C"/2 - cos "B"/2 sin "C"/2)/(sin "B"/2 cos "C"/2 + cos "B"/2 sin "C"/2)`
`= ((sin "B"/2 cos "C"/2)/(cos "B"/2 cos "C"/2) - (cos "B"/2 sin "C"/2)/(cos "B"/2 cos "C"/2))/((sin "B"/2 cos "C"/2)/(cos "B"/2 cos "C"/2) + (cos "B"/2 sin "C"/2)/(cos "B"/2 cos "C"/2))`
`= ((sin "B"/2)/(cos "B"/2) - (sin "C"/2)/(cos "C"/2))/((sin "B"/2)/(cos "C"/2) + (sin "C"/2)/(cos "C"/2))`
`= (tan "B"/2 - tan "C"/2)/(tan "B"/2 + tan "C"/2)`
= RHS.
APPEARS IN
संबंधित प्रश्न
In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`
In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot C/2`
In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a + c - b)
In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.
(A) `1/5`
(B) `sqrt(1/5)`
(C) `4/5`
(D) `2/5`
The principal solutions of cot x = -`sqrt3` are .................
In , ΔABC with usual notations prove that
(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(sqrt(2), pi/4)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(3/4, (3pi)/4)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(1/2, (7pi)/3)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(sqrt(2), sqrt(2))`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(0, 1/2)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(1, - sqrt(3))`
In any ΔABC, prove the following:
`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`
In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot "B"/2, cot "C"/2` are also in A.P.
In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.
In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.
Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.
State whether the following equation has a solution or not?
cos 2θ = `1/3`
In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.
In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.
In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.
If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______
In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2
In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B
Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`
In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`
In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled
If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.
In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0
In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0
In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0
In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`
In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.
In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to
In a ΔABC if 2 cos C = sin B · cosec A, then ______.
With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.
In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.
In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.
In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.
If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______
If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.
In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______
In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
If in ΔABC, `sin "B"/2 sin "C"/2 = sin "A"/2` and 2s is the perimeter of the triangle, then s is ______.
In ΔABC, if `"a" cos^2 "C"/2 + "c" cos^2 "A"/2 = (3"b")/2`, then a, b, c are in ______.
If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.
In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.
Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.
In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)
In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.
The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.
Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)
If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.
In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.
If in ΔABC, `sin A/2 * sin C/2 = sin B/2` and 2s is the perimeter of the triangle, then s = ______.
In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.
If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.