Advertisements
Advertisements
प्रश्न
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(0, 1/2)`
उत्तर
Here x = 0 and y = 2
∴ the point lies on the positive side of Y-axis.
Let the polar coordinates be (r, θ)
Then, r2 = x2 + y2
= `(0)^2 + (1/2)^2`
= `0 + 1/4`
= `1/4`
∴ r = `1/2` ...[∵ r > 0]
cos θ = `x/r = 0/(1/2)` = 0
and
sin θ = `y/r = (1/2)/(1/2)` = 1
Since, the point lies on the positive side of Y-axis and
0 ≤ θ < 2π
`cos θ = 0 = cos pi/(2) and
sin θ = 1 = sin pi/(2)`
∴ θ = `pi/(2)`
∴ the polar coordinates of the given point are `(1/2, pi/2)`.
APPEARS IN
संबंधित प्रश्न
In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`
In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`
In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a + c - b)
In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.
(A) `1/5`
(B) `sqrt(1/5)`
(C) `4/5`
(D) `2/5`
The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`
In , ΔABC prove that
`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`
In , ΔABC with usual notations prove that
(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(sqrt(2), pi/4)`
Find the Cartesian coordinates of the point whose polar coordinates are :
`(4, pi/2)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(3/4, (3pi)/4)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(1/2, (7pi)/3)`
Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.
In any Δ ABC, prove the following:
a sin A - b sin B = c sin (A - B)
In any Δ ABC, prove the following:
a2 sin (B - C) = (b2 - c2) sin A.
In any Δ ABC, prove the following:
ac cos B - bc cos A = a2 - b2
In any Δ ABC, prove the following:
`("b" - "c")/"a" = (tan "B"/2 - tan "C"/2)/(tan "B"/2 +tan "C"/2)`
In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.
In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.
Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.
If sin `(sin^-1 1/5 + cos^-1 x) = 1`, then find the value of x.
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______
In ∆ABC, prove that ac cos B − bc cos A = a2 − b2
In ∆ABC, prove that `("b" - "c")^2 cos^2 ("A"/2) + ("b" + "c")^2 sin^2 ("A"/2)` = a2
In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B
In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.
In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`
In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled
In ∆ABC, prove that `sin ((A - B)/2) = ((a - b)/c) cos C/2`
If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.
In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0
In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0
In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`
In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?
In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.
In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to
In a ΔABC if 2 cos C = sin B · cosec A, then ______.
With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.
In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.
In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.
In a ΔABC, `(sin "C"/2)/(cos(("A" - "B")/2))` = ______
In a ΔABC, 2ab sin`((A + B - C)/2)` = ______
If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.
In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______
In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______
If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______
In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.
In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.
In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.
If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is ______.
Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)
If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.
In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.
In ΔABC, `(a - b)^2 cos^2 C/2 + (a + b)^2 sin^2 C/2` is equal to ______.
If in ΔABC, `sin A/2 * sin C/2 = sin B/2` and 2s is the perimeter of the triangle, then s = ______.