हिंदी

In ∆ABC, if ∠A = π2, then prove that sin(B − C) = b2-c2b2+c2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`

योग

उत्तर

In ∆ABC, ∠A = `pi/2`   .......[Given]

∴ sin A = `sin pi/2` = 1

and A + B + C = π

∴ B + C = `pi/2`

∴ B = `pi/2 - "C"` and C = `pi/2 - "B"`

∴ sin B = `sin (pi/2 - "C")`

= cos C and sin C

= `sin (pi/2 - "B")`

= cos B  .......(i)

In ∆ABC by sine rule, we have

`"a"/(sin "A") = "b"/(sin "B") = "c"/(sin "C")`

∴ `"a"/1 = "b"/(sin "B") = "c"/(sin "C")`

∴ b = a sin B, c = a sin C     .......(ii)

∴ R.H.S. = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`

= `("a"^2sin^2"B" - "a"^2sin^2"C")/("a"^2sin^2"B" + "a"^2sin^2"C")`  .......[From (ii)]

= `(sin^2"B" - sin^2"C")/(sin^2"B" + sin^2"C")`

= `(sin"B"*(sin"B") - sin"C"*(sin"C"))/(sin^2"B" + sin^2"C")`

= `(sin"B" cos"C" - sin"C" cos"B")/(sin^2"B" + cos^2"B")`  .......[From (i)]

= `(sin("B" - "C"))/1`

= sin (B − C)

= L.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Trigonometric Functions - Long Answers III

संबंधित प्रश्न

In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


 In , ΔABC with usual notations prove that

(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(sqrt(2), pi/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(3/4, (3pi)/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(1, - sqrt(3))`


In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any ΔABC, prove the following:

`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`


In any Δ ABC, prove the following:

ac cos B - bc cos A = a2 - b2


In any Δ ABC, prove the following:

`("b" - "c")/"a" = (tan  "B"/2 - tan  "C"/2)/(tan  "B"/2 +tan  "C"/2)`


In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.


Show that `2 sin^-1 (3/5) = tan^-1(24/7)`


Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.


If sin `(sin^-1  1/5 + cos^-1 x) = 1`, then find the value of x.


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.


In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B


Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`


In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


In ∆ABC, prove that `sin  ((A - B)/2) = ((a - b)/c) cos  C/2` 


If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.


In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.


If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______ 


In a ΔABC, `(sin  "C"/2)/(cos(("A" - "B")/2))` = ______ 


In a ΔABC, 2ab sin`((A + B - C)/2)` = ______


If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.


If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.


In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______ 


If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______ 


The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.


If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.


If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is ______.


If in ΔABC, `sin  "B"/2 sin  "C"/2 = sin  "A"/2` and 2s is the perimeter of the triangle, then s is ______.


In ΔABC, if `"a" cos^2  "C"/2 + "c" cos^2  "A"/2 = (3"b")/2`, then a, b, c are in ______.


In ΔABC, `cos"A"/"a" = cos"B"/"b"  cos"C"/"c"`. If a = `1/sqrt(6)`, then the area of the triangle is ______.


If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.


In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.


In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.


Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.


If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is  ______.


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.


In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.


In ΔABC, `(a - b)^2 cos^2  C/2 + (a + b)^2 sin^2  C/2` is equal to ______.


If in ΔABC, `sin  A/2 * sin  C/2 = sin  B/2` and 2s is the perimeter of the triangle, then s = ______.


In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.


If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×