हिंदी

In any ΔABC, prove the following: cb cos Abc cos Acos Bcos Cc-b cos Ab-c cos A=cos Bcos C - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In any ΔABC, prove the following:

`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`

योग

उत्तर

L.H.S. = `("c" - "b cos A")/("b" - "c cos A")`

`= ("c" - "b" (("b"^2 + "c"^2 - "a"^2)/(2"bc")))/("b" - "c"  (("b"^2 + "c"^2 - "a"^2)/(2"bc")))`

`= ("c" - (("b"^2 + "c"^2 - "a"^2)/"2c"))/("b" - (("b"^2 + "c"^2 - "a"^2)/"2b"))`

`= ((2"c"^2 - "b"^2 - "c"^2 + "a"^2)/"2c")/((2"b"^2 - "b"^2 - "c"^2 + "a"^2)/"2b")`

= `((("c"^2 + "a"^2 - "b"^2)/"2c"))/((("a"^2 + "b"^2 - "c"^2)/"2b")) `

`= ((("c"^2 + "a"^2 - "b"^2)/"2ca"))/((("a"^2 + "b"^2 - "c"^2)/"2ab")`

= `"cos B"/"cos C"`

= R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Miscellaneous exercise 3 [पृष्ठ १०९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 11.2 | पृष्ठ १०९

संबंधित प्रश्न

In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`


In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot  C/2`


In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.


In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.

(A) `1/5`

(B) `sqrt(1/5)`

(C) `4/5`

(D) `2/5`


The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`

 


If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to

(A) `1/sqrt5`

(B) `1/sqrt10`

(C) `1/sqrt15`

(D) `1/(2sqrt5)`


With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(3/4, (3pi)/4)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(sqrt(2), sqrt(2))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(0, 1/2)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(1, - sqrt(3))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(3/2, (3√3)/2)`.


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any Δ ABC, prove the following:

ac cos B - bc cos A = a2 - b2


In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.


In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.


Show that

`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`


Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.


If sin `(sin^-1  1/5 + cos^-1 x) = 1`, then find the value of x.


If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.


In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.


In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, prove that ac cos B − bc cos A = a2 − b2 


In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B


In ∆ABC, prove that `("b" - "c")^2 cos^2 ("A"/2) + ("b" + "c")^2 sin^2 ("A"/2)` = a2 


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.


In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0


In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0


In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.


In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.


If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______ 


In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.


In a ΔABC, `(sin  "C"/2)/(cos(("A" - "B")/2))` = ______ 


In a ΔABC, 2ab sin`((A + B - C)/2)` = ______


In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = _______.


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


In ΔABC, `(sin(B - C))/(sin(B + C))` = ______


In Δ ABC, with the usual notations, if `(tan  "A"/2)(tan  "B"/2) = 3/4` then a + b = ______.


In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______ 


If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is ______.


In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.


If in ΔABC, `sin  "B"/2 sin  "C"/2 = sin  "A"/2` and 2s is the perimeter of the triangle, then s is ______.


In ΔABC, if `"a" cos^2  "C"/2 + "c" cos^2  "A"/2 = (3"b")/2`, then a, b, c are in ______.


In ΔABC, `cos"A"/"a" = cos"B"/"b"  cos"C"/"c"`. If a = `1/sqrt(6)`, then the area of the triangle is ______.


If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.


In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.


In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.


If in ΔABC, `sin  A/2 * sin  C/2 = sin  B/2` and 2s is the perimeter of the triangle, then s = ______.


In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.


If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×