Advertisements
Advertisements
प्रश्न
In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot C/2`
उत्तर
In ΔABC by sine rule, we have
`a/sinA = b/sinB = c/sinC` = k
∴ a = k sin A, b = k sin B and c = k sin C
Now, consider
`(a - b)/(a + b) = (ksinA - ksinB)/(ksinA + ksinB)`
= `(sinA - sinB)/(sinA + sinB)`
= `(2cos((A + B)/2)sin((A - B)/2))/(2sin((A + B)/2)cos((A - B)/2))`
= `cot((A + B)/2)*tan((A - B)/2)`
= `cot(pi/2 - C/2).tan((A - B)/2)` .....[∵ A + B + C = π]
= `tan(C/2)tan((A - B)/2)`
∴ `(a - b)/(a + b) = tan C/2* tan((A - B)/2)`
∴ `tan((A - B)/2) = (a - b)/(a + b)cot(C/2)`
APPEARS IN
संबंधित प्रश्न
With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2
In , ΔABC with usual notations prove that
(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(sqrt(2), pi/4)`
Find the Cartesian coordinates of the point whose polar coordinates are :
`(4, pi/2)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(1/2, (7pi)/3)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(sqrt(2), sqrt(2))`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(0, 1/2)`
In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.
Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.
In any Δ ABC, prove the following:
ac cos B - bc cos A = a2 - b2
In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.
With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C
In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.
Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]
Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.
If sin `(sin^-1 1/5 + cos^-1 x) = 1`, then find the value of x.
If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.
State whether the following equation has a solution or not?
cos 2θ = `1/3`
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.
If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______
In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2
Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`
In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B
In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`
In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled
If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.
In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`
In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.
In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to
With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.
In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.
In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.
If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______
In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.
In a ΔABC, `(sin "C"/2)/(cos(("A" - "B")/2))` = ______
In a ΔABC, 2ab sin`((A + B - C)/2)` = ______
If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.
If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.
In Δ ABC, with the usual notations, if `(tan "A"/2)(tan "B"/2) = 3/4` then a + b = ______.
If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.
If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.
If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is ______.
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
In ΔABC, if `"a" cos^2 "C"/2 + "c" cos^2 "A"/2 = (3"b")/2`, then a, b, c are in ______.
If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.
In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.
Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.
In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)
In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.
The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.
Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)
In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.
In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.
If in ΔABC, `sin A/2 * sin C/2 = sin B/2` and 2s is the perimeter of the triangle, then s = ______.