Advertisements
Advertisements
प्रश्न
Show that
`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`
उत्तर
LHS = `tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8)`
`= tan^-1 [(1/5 + 1/7)/(1 - 1/5 xx 1/7)] + tan^-1 [(1/3+1/8)/(1 - 1/3 xx 1/8)]`
`= tan^-1 ((7 + 5)/(35 - 1)) + tan^-1 ((8 + 3)/(24 - 1))`
`= tan^-1 (12/34) + tan^-1 (11/23)`
`= tan^-1 (6/17) + tan^-1 (11/23)`
`= tan^-1 [(6/17 + 11/23)/(1 - 6/17 xx 11/23)]`
`= tan^-1((138 + 187)/(391 - 66)) = tan^-1 (325/325)`
`= tan^-1 (1) = tan^-1 (tan pi/4)`
`= pi/4`
= RHS.
APPEARS IN
संबंधित प्रश्न
In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.
In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.
(A) `1/5`
(B) `sqrt(1/5)`
(C) `4/5`
(D) `2/5`
The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`
If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to
(A) `1/sqrt5`
(B) `1/sqrt10`
(C) `1/sqrt15`
(D) `1/(2sqrt5)`
In , ΔABC prove that
`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`
In , ΔABC with usual notations prove that
(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(sqrt(2), pi/4)`
Find the Cartesian coordinates of the point whose polar coordinates are :
`(4, pi/2)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(sqrt(2), sqrt(2))`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(3/2, (3√3)/2)`.
In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.
In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.
In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.
In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.
If sin `(sin^-1 1/5 + cos^-1 x) = 1`, then find the value of x.
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.
In ∆ABC, prove that ac cos B − bc cos A = a2 − b2
In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2
Find the polar co-ordinates of point whose Cartesian co-ordinates are `(1, sqrt(3))`
In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B
Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`
With usual notations, prove that `(cos "A")/"a" + (cos "B")/"b" + (cos "C")/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`
In ∆ABC, prove that `("b" - "c")^2 cos^2 ("A"/2) + ("b" + "c")^2 sin^2 ("A"/2)` = a2
In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.
In ∆ABC, prove that `sin ((A - B)/2) = ((a - b)/c) cos C/2`
If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.
In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0
In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.
In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to
In a ΔABC, c2 sin 2B + b2 sin 2C = ?
If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______
In a ΔABC, 2ab sin`((A + B - C)/2)` = ______
If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.
If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.
In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = _______.
In ΔABC, `(sin(B - C))/(sin(B + C))` = ______
In Δ ABC, with the usual notations, if `(tan "A"/2)(tan "B"/2) = 3/4` then a + b = ______.
In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______
In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
If in ΔABC, `sin "B"/2 sin "C"/2 = sin "A"/2` and 2s is the perimeter of the triangle, then s is ______.
In a triangle ABC, b = `sqrt3`, c = 1 and ∠A = 30°, then the largest angle of the triangle is ______
In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.
In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.
In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.
The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.
Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)
In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.
If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.
In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.
In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.
In any ΔABC, prove that:
(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.
If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.