हिंदी

In ∆ABC, prove that sin (A-B2)=(a-bc)cos C2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ∆ABC, prove that `sin  ((A - B)/2) = ((a - b)/c) cos  C/2` 

योग

उत्तर

`sin((A - B)/2) = ((a - b)/c) cos  C/2`

Consider `(a - b)/c`

= `(k sin A - k sin B)/(k sin C)`   ....(Sine rule)

= `(sin A - sin B)/sin C`

= `(2cos((A + B)/2)sin((A - B)/2))/(sin C)`

= `(2sin  C/2 * sin((A - B)/2))/(2sin  C/2 cos  C/2)`   ....(∵ A + B + C = π)

= `sin((A - B)/2)/(cos  C/2)`

∴ `(a - b)/2 = sin((A - B)/2)/(cos  C/2)`

∴ `sin  ((A - B)/2) = ((a - b)/c) cos  C/2` 

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Trigonometric Functions - Short Answers II

संबंधित प्रश्न

In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.


In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.

(A) `1/5`

(B) `sqrt(1/5)`

(C) `4/5`

(D) `2/5`


If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to

(A) `1/sqrt5`

(B) `1/sqrt10`

(C) `1/sqrt15`

(D) `1/(2sqrt5)`


With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2


The principal solutions of cot x = -`sqrt3`  are .................


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


 In , ΔABC with usual notations prove that

(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(sqrt(2), pi/4)`


Find the Cartesian coordinates of the point whose polar coordinates are :

`(4,  pi/2)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(sqrt(2), sqrt(2))`


In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any Δ ABC, prove the following:

a sin A - b sin B = c sin (A - B)


In any Δ ABC, prove the following:

a2 sin (B - C) = (b2 - c2) sin A.


In any Δ ABC, prove the following:

ac cos B - bc cos A = a2 - b2


In any Δ ABC, prove the following:

`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`


In any Δ ABC, prove the following:

`("b" - "c")/"a" = (tan  "B"/2 - tan  "C"/2)/(tan  "B"/2 +tan  "C"/2)`


In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.


In Δ ABC, if ∠C = 90°, then prove that sin (A - B) = `("a"^2 - "b"^2)/("a"^2 + "b"^2)`


In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.


In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.


In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.


Show that `2 sin^-1 (3/5) = tan^-1(24/7)`


Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]


If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.


State whether the following equation has a solution or not?

cos 2θ = `1/3`


In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.


In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, prove that ac cos B − bc cos A = a2 − b2 


In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2 


Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`


With usual notations, prove that `(cos "A")/"a" + (cos "B")/"b" + (cos "C")/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`


In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled


In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0


In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0


In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.


In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.


In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.


If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______


In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = _______.


In ΔABC, `(sin(B - C))/(sin(B + C))` = ______


In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______ 


In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______ 


In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______ 


In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______


In a triangle ABC, b = `sqrt3`, c = 1 and ∠A = 30°, then the largest angle of the triangle is ______ 


In ΔABC, `cos"A"/"a" = cos"B"/"b"  cos"C"/"c"`. If a = `1/sqrt(6)`, then the area of the triangle is ______.


In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.


In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.


Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.


If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is  ______.


In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)


In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.


If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.


In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.


If in ΔABC, `sin  A/2 * sin  C/2 = sin  B/2` and 2s is the perimeter of the triangle, then s = ______.


The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.


If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×