Advertisements
Advertisements
प्रश्न
Show that `2 sin^-1 (3/5) = tan^-1(24/7)`
उत्तर
Let `2 sin^-1 (3/5)` = x
Then sin x = `3/5`, where `0 < "x" < pi/2`
∴ cos x > 0
Now, cos x = `sqrt(1 - sin^2"x") = sqrt(1 - 9/25) = sqrt(16/25) = 4/5`
∴ `tan "x" = "sin x"/"cos x" = (3/5)/(4/5) = 3/4`
∴ x = `tan^-1(3/4)`
∴ `sin^-1 (3/5) = tan^-1(3/4)`
Now, LHS = `2sin^-1 (3/5) = 2tan^-1(3/4)`
`= tan^-1 (3/4) + tan^-1(3/4)`
= `tan^-1 [(3/4 + 3/4)/(1 - 3/4 xx 3/4)] = tan^-1 [(12 + 12)/(16 - 9)]`
`= tan^-1(24/7)` = RHS
Alternative Method:
LHS = `2sin^-1 (3/5) = 2tan^-1(3/4)`
`= tan^-1 [(2(3/4))/(1 - (3/4)^2)] .....[because 2 tan^-1 "x" = tan^-1 ("2x"/(1 - "x"^2))]`
`= tan^-1 [(3/2)/(1 - (9/16))]`
`= tan^-1 (3/2 xx 16/7)`
`= tan^-1 (24/7)`
= RHS
APPEARS IN
संबंधित प्रश्न
In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`
In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`
In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a + c - b)
In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.
The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`
If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to
(A) `1/sqrt5`
(B) `1/sqrt10`
(C) `1/sqrt15`
(D) `1/(2sqrt5)`
With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2
The principal solutions of cot x = -`sqrt3` are .................
In , ΔABC prove that
`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`
In , ΔABC with usual notations prove that
(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(1/2, (7pi)/3)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(1, - sqrt(3))`
In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.
Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.
In any ΔABC, prove the following:
`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`
In any Δ ABC, prove the following:
`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`
In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.
With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C
Show that
`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`
Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]
If sin `(sin^-1 1/5 + cos^-1 x) = 1`, then find the value of x.
If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.
In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.
In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.
In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.
If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______
In ∆ABC, prove that ac cos B − bc cos A = a2 − b2
In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2
Find the polar co-ordinates of point whose Cartesian co-ordinates are `(1, sqrt(3))`
In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B
Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`
In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.
In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled
In ∆ABC, prove that `sin ((A - B)/2) = ((a - b)/c) cos C/2`
If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.
In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0
In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?
In a ΔABC if 2 cos C = sin B · cosec A, then ______.
In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.
If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.
The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.
In Δ ABC, with the usual notations, if `(tan "A"/2)(tan "B"/2) = 3/4` then a + b = ______.
In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______
The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.
In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.
If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.
In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.
If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is ______.
In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)
In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.
The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.
If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.
In ΔABC, `(a - b)^2 cos^2 C/2 + (a + b)^2 sin^2 C/2` is equal to ______.
If in ΔABC, `sin A/2 * sin C/2 = sin B/2` and 2s is the perimeter of the triangle, then s = ______.
In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.