Advertisements
Advertisements
Question
Show that `2 sin^-1 (3/5) = tan^-1(24/7)`
Solution
Let `2 sin^-1 (3/5)` = x
Then sin x = `3/5`, where `0 < "x" < pi/2`
∴ cos x > 0
Now, cos x = `sqrt(1 - sin^2"x") = sqrt(1 - 9/25) = sqrt(16/25) = 4/5`
∴ `tan "x" = "sin x"/"cos x" = (3/5)/(4/5) = 3/4`
∴ x = `tan^-1(3/4)`
∴ `sin^-1 (3/5) = tan^-1(3/4)`
Now, LHS = `2sin^-1 (3/5) = 2tan^-1(3/4)`
`= tan^-1 (3/4) + tan^-1(3/4)`
= `tan^-1 [(3/4 + 3/4)/(1 - 3/4 xx 3/4)] = tan^-1 [(12 + 12)/(16 - 9)]`
`= tan^-1(24/7)` = RHS
Alternative Method:
LHS = `2sin^-1 (3/5) = 2tan^-1(3/4)`
`= tan^-1 [(2(3/4))/(1 - (3/4)^2)] .....[because 2 tan^-1 "x" = tan^-1 ("2x"/(1 - "x"^2))]`
`= tan^-1 [(3/2)/(1 - (9/16))]`
`= tan^-1 (3/2 xx 16/7)`
`= tan^-1 (24/7)`
= RHS
APPEARS IN
RELATED QUESTIONS
In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`
In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`
In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a + c - b)
In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.
(A) `1/5`
(B) `sqrt(1/5)`
(C) `4/5`
(D) `2/5`
The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`
If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to
(A) `1/sqrt5`
(B) `1/sqrt10`
(C) `1/sqrt15`
(D) `1/(2sqrt5)`
In , ΔABC prove that
`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`
In , ΔABC with usual notations prove that
(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(sqrt(2), pi/4)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(3/4, (3pi)/4)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(0, 1/2)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(3/2, (3√3)/2)`.
Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.
In any Δ ABC, prove the following:
a2 sin (B - C) = (b2 - c2) sin A.
In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.
With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C
In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.
Show that
`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`
Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]
If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______
In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2
In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B
In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B
In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.
In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled
In ∆ABC, prove that `sin ((A - B)/2) = ((a - b)/c) cos C/2`
If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.
In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0
In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`
In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?
In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to
In a ΔABC if 2 cos C = sin B · cosec A, then ______.
With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.
In a ΔABC, `(sin "C"/2)/(cos(("A" - "B")/2))` = ______
In a ΔABC, 2ab sin`((A + B - C)/2)` = ______
If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.
If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.
In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = _______.
The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.
In Δ ABC, with the usual notations, if `(tan "A"/2)(tan "B"/2) = 3/4` then a + b = ______.
In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______
In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.
If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.
In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
If in ΔABC, `sin "B"/2 sin "C"/2 = sin "A"/2` and 2s is the perimeter of the triangle, then s is ______.
In ΔABC, `cos"A"/"a" = cos"B"/"b" cos"C"/"c"`. If a = `1/sqrt(6)`, then the area of the triangle is ______.
If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.
In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.
Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.
The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.
Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)
If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.
In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.
In ΔABC, `(a - b)^2 cos^2 C/2 + (a + b)^2 sin^2 C/2` is equal to ______.
The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.
In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.