Advertisements
Advertisements
Question
In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______
Options
50
`10sqrt2`
25
`25sqrt2`
MCQ
Fill in the Blanks
Solution
In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is 25.
Explanation:
sin2A + sin2B = sin2C
⇒ sin C = 1 ⇒ C = `pi/2`
`a/sinA = b/sinB = c/sinC`
⇒ `a/sinA = b/sinB = 10/1`
⇒ a = 10 sin A, b = 10 sin B
A(ΔABC) = `1/2ab = 1/2(10 sinA)(10 sinB)`
= `1/2 xx 100 xx sinA xx sinB`
Maximum value of sin A sin B = `1/2`
∴ A(ΔABC) = `1/2 xx 100 xx 1/2`
= 25 sq. units.
shaalaa.com
Is there an error in this question or solution?