मराठी

In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______ -

Advertisements
Advertisements

प्रश्न

In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______ 

पर्याय

  • 50

  • `10sqrt2`

  • 25

  • `25sqrt2`

MCQ
रिकाम्या जागा भरा

उत्तर

In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is 25.

Explanation:

 

sin2A + sin2B = sin2C

⇒ sin C = 1 ⇒ C = `pi/2`

`a/sinA = b/sinB = c/sinC`

⇒ `a/sinA = b/sinB = 10/1`

⇒ a = 10 sin A, b = 10 sin B

A(ΔABC) = `1/2ab = 1/2(10 sinA)(10 sinB)`

= `1/2 xx 100 xx sinA xx sinB`

Maximum value of sin A sin B = `1/2`

∴ A(ΔABC) = `1/2 xx 100 xx 1/2`

= 25 sq. units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×