Advertisements
Advertisements
Question
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(1, - sqrt(3))`
Solution
Here x = 1 and y = `- sqrt(3)`
∴ The point lies in the fourth quadrant.
Let the polar coordinates be (r, θ).
Then r2 = x2 + y2 = (1)2 + `(- sqrt(3))^2` = 1 + 3 = 4
∴ r = 2 ...[ ∵ r > 0]
`cos θ = x/r = (1)/(2)`
and `sin θ = y/r = - sqrt(3)/(2)`
∴ tan θ = `- sqrt(3)`
Since, the point lies in the fourth quadrant and 0 ≤ θ < 2π
tan θ = `- sqrt(3) = - tan π/3`
= `tan(2π - π/3)` ...[ ∵ tan(2π – θ) = –tan θ]
= `tan (5π)/3`
∴ θ = `(5π)/3`
∴ The polar coordinates of the given point are `(2, (5π)/3)`.
APPEARS IN
RELATED QUESTIONS
In any ΔABC if a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.
The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`
With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2
In , ΔABC prove that
`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`
In ,Δ ABC with usual notations prove that
b2 = c2 +a2 - 2 ca cos B
Find the Cartesian coordinates of the point whose polar coordinates are :
`(4, pi/2)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(1/2, (7pi)/3)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(0, 1/2)`
In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.
Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.
In any Δ ABC, prove the following:
a sin A - b sin B = c sin (A - B)
In any ΔABC, prove the following:
`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`
In any Δ ABC, prove the following:
ac cos B - bc cos A = a2 - b2
In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot "B"/2, cot "C"/2` are also in A.P.
In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.
In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.
With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C
In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.
Show that
`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`
Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]
If sin `(sin^-1 1/5 + cos^-1 x) = 1`, then find the value of x.
If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.
State whether the following equation has a solution or not?
cos 2θ = `1/3`
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.
If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______
In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2
Find the polar co-ordinates of point whose Cartesian co-ordinates are `(1, sqrt(3))`
Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`
In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B
If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.
In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0
In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0
In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`
In a ΔABC, c2 sin 2B + b2 sin 2C = ?
In a ΔABC if 2 cos C = sin B · cosec A, then ______.
With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.
In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.
If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______
In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.
If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______
If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.
The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.
In ΔABC, `(sin(B - C))/(sin(B + C))` = ______
In Δ ABC, with the usual notations, if `(tan "A"/2)(tan "B"/2) = 3/4` then a + b = ______.
In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______
In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.
If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.
If in ΔABC, `sin "B"/2 sin "C"/2 = sin "A"/2` and 2s is the perimeter of the triangle, then s is ______.
If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.
In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.
Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.
If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is ______.
In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)
In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.
In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.
In ΔABC, `(a - b)^2 cos^2 C/2 + (a + b)^2 sin^2 C/2` is equal to ______.
In any ΔABC, prove that:
(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.
The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.