Advertisements
Advertisements
Question
In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot "B"/2, cot "C"/2` are also in A.P.
Solution
a, b, c are in A.P.
∴ 2b = a + c ....(1)
Now,
`cot "A"/2 + cot "C"/2`
`= (cos "A"/2)/(sin "A"/2) + (cos "C"/2)/(sin "C"/2)`
`= (cos "A"/2 . sin "C"/2 + sin "A"/2. cos "C"/2)/(sin "A"/2. sin "C"/2)`
`= (sin ("A"/2 + "C"/2))/(sin "A"/2. sin "C"/2)`
`= (sin (pi/2 - "B"/2))/(sqrt((("s - b")("s - c"))/"bc"). sqrt((("s - a")("s - b"))/"ab"))` .....[∵ A + B + C = π]
`= (cos "B"/2)/((("s - b")/"b"). sqrt((("s - c")("s - a"))/"ca")`
`= ("b cos" "B"/2)/(("s - b"). sin "B"/2)`
`= "b"/("s - b"). cot "B"/2`
`= "b"/((("a + b + c")/2 - "b")). cot "B"/2` ....[∵ 2s = a + b + c]
`= ("2b"/("a + c - b")).cot "B"/2`
`= "2b"/(("2b - b")). cot "B"/2` ....[By (1)]
`= "2b"/"b".cot "B"/2`
∴ `cot "A"/2 + cot "C"/2 = 2 cot "B"/2`
Hence, `cot "A"/2, cot "B"/2, cot "C"/2` are in A.P.
APPEARS IN
RELATED QUESTIONS
In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`
In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`
In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a + c - b)
The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`
With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2
In , ΔABC prove that
`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
`(1/2, (7pi)/3)`
Find the polar co-ordinates of the point whose Cartesian co-ordinates are.
`(3/2, (3√3)/2)`.
In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.
In any Δ ABC, prove the following:
a sin A - b sin B = c sin (A - B)
In any ΔABC, prove the following:
`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`
In any Δ ABC, prove the following:
a2 sin (B - C) = (b2 - c2) sin A.
In any Δ ABC, prove the following:
ac cos B - bc cos A = a2 - b2
In any Δ ABC, prove the following:
`("b" - "c")/"a" = (tan "B"/2 - tan "C"/2)/(tan "B"/2 +tan "C"/2)`
In Δ ABC, if ∠C = 90°, then prove that sin (A - B) = `("a"^2 - "b"^2)/("a"^2 + "b"^2)`
In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.
In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.
In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.
With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C
Show that `2 sin^-1 (3/5) = tan^-1(24/7)`
Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.
If sin `(sin^-1 1/5 + cos^-1 x) = 1`, then find the value of x.
State whether the following equation has a solution or not?
cos 2θ = `1/3`
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.
In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B
In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B
In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`
In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled
In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`
In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?
In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.
In a ΔABC, c2 sin 2B + b2 sin 2C = ?
In a ΔABC if 2 cos C = sin B · cosec A, then ______.
In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.
If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______
In a ΔABC, `(sin "C"/2)/(cos(("A" - "B")/2))` = ______
If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.
The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.
In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______
If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______
In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.
If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.
If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is ______.
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
If in ΔABC, `sin "B"/2 sin "C"/2 = sin "A"/2` and 2s is the perimeter of the triangle, then s is ______.
In ΔABC, if `"a" cos^2 "C"/2 + "c" cos^2 "A"/2 = (3"b")/2`, then a, b, c are in ______.
In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.
Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.
In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)
The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.
Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)
In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.
In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.
In any ΔABC, prove that:
(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.
If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.