English

In Δ ABC, if a, b, c are in A.P., then show that cot ABCA2,cot B2,cot C2 are also in A.P. - Mathematics and Statistics

Advertisements
Advertisements

Question

In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.

Sum

Solution

a, b, c are in A.P.

∴ 2b = a + c       ....(1)

Now,

`cot  "A"/2 + cot  "C"/2`

`= (cos  "A"/2)/(sin  "A"/2)  +  (cos  "C"/2)/(sin  "C"/2)`

`= (cos  "A"/2 . sin  "C"/2 + sin  "A"/2. cos  "C"/2)/(sin  "A"/2. sin  "C"/2)`

`= (sin  ("A"/2 + "C"/2))/(sin  "A"/2. sin  "C"/2)`

`= (sin  (pi/2 - "B"/2))/(sqrt((("s - b")("s - c"))/"bc"). sqrt((("s - a")("s - b"))/"ab"))`    .....[∵ A + B + C = π]

`= (cos  "B"/2)/((("s - b")/"b"). sqrt((("s - c")("s - a"))/"ca")`

`= ("b cos"  "B"/2)/(("s - b"). sin  "B"/2)`

`= "b"/("s - b"). cot  "B"/2`

`= "b"/((("a + b + c")/2 - "b")). cot  "B"/2`   ....[∵ 2s = a + b + c]

`= ("2b"/("a + c - b")).cot  "B"/2`

`= "2b"/(("2b - b")). cot  "B"/2`    ....[By (1)]

`= "2b"/"b".cot  "B"/2`

∴ `cot  "A"/2 +  cot  "C"/2 = 2 cot  "B"/2`

Hence, `cot  "A"/2,  cot  "B"/2,  cot  "C"/2` are in A.P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Miscellaneous exercise 3 [Page 109]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 12 | Page 109

RELATED QUESTIONS

In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`


In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`

 


With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(3/2, (3√3)/2)`.


In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.


In any Δ ABC, prove the following:

a sin A - b sin B = c sin (A - B)


In any ΔABC, prove the following:

`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`


In any Δ ABC, prove the following:

a2 sin (B - C) = (b2 - c2) sin A.


In any Δ ABC, prove the following:

ac cos B - bc cos A = a2 - b2


In any Δ ABC, prove the following:

`("b" - "c")/"a" = (tan  "B"/2 - tan  "C"/2)/(tan  "B"/2 +tan  "C"/2)`


In Δ ABC, if ∠C = 90°, then prove that sin (A - B) = `("a"^2 - "b"^2)/("a"^2 + "b"^2)`


In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.


In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.


In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


Show that `2 sin^-1 (3/5) = tan^-1(24/7)`


Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.


If sin `(sin^-1  1/5 + cos^-1 x) = 1`, then find the value of x.


State whether the following equation has a solution or not?

cos 2θ = `1/3`


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B


In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled


In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`


In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?


In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


In a ΔABC if 2 cos C = sin B · cosec A, then ______.


In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.


If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______ 


In a ΔABC, `(sin  "C"/2)/(cos(("A" - "B")/2))` = ______ 


If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______ 


If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______ 


In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______ 


In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______


The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.


If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.


If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is ______.


If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.


If in ΔABC, `sin  "B"/2 sin  "C"/2 = sin  "A"/2` and 2s is the perimeter of the triangle, then s is ______.


In ΔABC, if `"a" cos^2  "C"/2 + "c" cos^2  "A"/2 = (3"b")/2`, then a, b, c are in ______.


In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.


Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.


In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.


In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.


In any ΔABC, prove that:

(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.


If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×