English

Find the Cartesian co-ordinates of point whose polar co-ordinates are (4,π3) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`

Sum

Solution

(r, θ) = `(4, pi/3)`

Using x = r cos θ and y = r sin θ, where (x, y) are the required Cartesian co-ordinates, we get

x = `4 cos (pi/3)` and y = `4 sin (pi/3)`

∴ x = `4(1/2)` and y = `4(sqrt(3)/2)`

∴ x = 2 and y = `2sqrt(3)`

∴ The required Cartesian co-ordinates are `(2, 2sqrt(3))`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.3: Trigonometric Functions - Very Short Answers

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 1.3 Trigonometric Functions
Very Short Answers | Q 10

RELATED QUESTIONS

In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot  C/2`


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`

 


With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(sqrt(2), pi/4)`


Find the Cartesian coordinates of the point whose polar coordinates are :

`(4,  pi/2)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(sqrt(2), sqrt(2))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(0, 1/2)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(1, - sqrt(3))`


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any ΔABC, prove the following:

`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`


In any Δ ABC, prove the following:

ac cos B - bc cos A = a2 - b2


In any Δ ABC, prove the following:

`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`


In any Δ ABC, prove the following:

`("b" - "c")/"a" = (tan  "B"/2 - tan  "C"/2)/(tan  "B"/2 +tan  "C"/2)`


In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.


In Δ ABC, if ∠C = 90°, then prove that sin (A - B) = `("a"^2 - "b"^2)/("a"^2 + "b"^2)`


In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.


Show that `2 sin^-1 (3/5) = tan^-1(24/7)`


Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]


Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.


In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.


In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2 


In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B


In ∆ABC, prove that `("b" - "c")^2 cos^2 ("A"/2) + ("b" + "c")^2 sin^2 ("A"/2)` = a2 


In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


In ∆ABC, prove that `sin  ((A - B)/2) = ((a - b)/c) cos  C/2` 


If the angles A, B, C of ΔABC are in A.P. and its sides a, b, c are in G.P., then show that a2, b2, c2 are in A.P.


In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0


In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0


In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0


In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC if 2 cos C = sin B · cosec A, then ______.


If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______ 


In a ΔABC, `(sin  "C"/2)/(cos(("A" - "B")/2))` = ______ 


In a ΔABC, 2ab sin`((A + B - C)/2)` = ______


If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______


In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = _______.


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______ 


In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______


If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.


If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.


In a triangle ABC, b = `sqrt3`, c = 1 and ∠A = 30°, then the largest angle of the triangle is ______ 


If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.


In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.


In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.


Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.


In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)


In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.


If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.


In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×