English

In ∆ABC, prove that cos2A-cos2Ba+b+cos2B-cos2Cb+c+cos2C-cos2Ac+a = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0

Sum

Solution

In ∆ABC by sine rule, we have

`(sin"A")/"a" = (sin"B")/"b" = (sin"C")/"c"` = k

∴ sin A = ka, sin B = kb, sin C = kc

L.H.S. = `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")`

= `((1 - sin^2"A") - (1 - sin^2"B"))/("a" + "b") + ((1 - sin^2"B") - (1 - sin^2"C"))/("b" + "c") + ((1 - sin^2"C") - (1 - sin^2"A"))/("c" + "a")`

= `(sin^2"B" - sin^2"A")/("a" + "b") + (sin^2"C" - sin^2"B")/("b" + "c") + (sin^2"A" - sin^2"C")/("c" + "a")`

= `("k"^2"b"^2 - "k"^2"a"^2)/("a" + "b") + ("k"^2"c"^2 - ""^2"b"^2)/("b" + "c") + ("k"^2"a"^2 - "k"^2"c"^2)/("c" + "a")`

= `("k"^2("b" - "a")("b" + "a"))/("a" + "b") + ("k"^2("c" - "b")("c" + "b"))/("b" + "c") + ("k"^2("a" - "c")("a" + "c"))/("c" + "a")`

= k2(b − a + c − b + a − c)

= 0

= R.H.S.

∴ `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.3: Trigonometric Functions - Long Answers III

APPEARS IN

RELATED QUESTIONS

In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`


In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot  C/2`


 

In ΔABC with usual notations, prove that 2a `{sin^2(C/2)+csin^2 (A/2)}` = (a +   c - b)

 

In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.


In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.

(A) `1/5`

(B) `sqrt(1/5)`

(C) `4/5`

(D) `2/5`


With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(sqrt(2), pi/4)`


Find the Cartesian coordinates of the point whose polar coordinates are :

`(4,  pi/2)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(3/4, (3pi)/4)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(sqrt(2), sqrt(2))`


In ΔABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P.


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any Δ ABC, prove the following:

a sin A - b sin B = c sin (A - B)


In any ΔABC, prove the following:

`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`


In any Δ ABC, prove the following:

`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`


In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.


In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.


In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.


In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.


Prove that `tan^-1 sqrt"x" = 1/2 cos^-1 ((1 - "x")/(1 + "x"))`, if x ∈ [0, 1]


If sin `(sin^-1  1/5 + cos^-1 x) = 1`, then find the value of x.


If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.


State whether the following equation has a solution or not?

cos 2θ = `1/3`


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.


In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2 


In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B


In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.


In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0


In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0


In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`


In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


In a ΔABC if 2 cos C = sin B · cosec A, then ______.


With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.


In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.


In a ΔABC, 2ab sin`((A + B - C)/2)` = ______


In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = _______.


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


In ΔABC, `(sin(B - C))/(sin(B + C))` = ______


In Δ ABC, with the usual notations, if `(tan  "A"/2)(tan  "B"/2) = 3/4` then a + b = ______.


In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______ 


The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.


If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.


In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.


In ΔABC, `cos"A"/"a" = cos"B"/"b"  cos"C"/"c"`. If a = `1/sqrt(6)`, then the area of the triangle is ______.


In a ΔABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`, then a2, b2, c2 are in ______.


In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.


Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.


If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is  ______.


In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.


In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.


The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×