Advertisements
Advertisements
Question
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Solution
L.H.S. = cot−1(7) + 2 cot−1(3)
= cot–1(7) + cot–1(3) + cot–1(3)
= `pi/2 -tan^-1(7) + pi/2 - tan^-1(3) + pi/2 - tan^-1(3)` .......`[∵ tan^(−1)x + cot^(−1)x = pi/2]`
= `(3pi)/2 - [pi + tan^-1 ((7 + 3)/(1 - 7 xx 3)) + tan^-1(3)]` .......`[∵ tan^(-1)x + tan^(-1)y = pi + tan^(-1) (x + y)/(1 - xy), "if" x, y > 0 and xy > 1]`
= `(3pi)/2 - pi - [tan^-1 (10/-20) + tan^-1(3)]`
= `pi/2 - [tan^-1 (1/2) + tan^-1(3)]`
= `pi/2 - [tan^-1(3) - tan^-1(1/2)]` .......`[∵ tan^-1(-x) = -tan^-1(x)]`
= `pi/2 - [tan^-1((3 - 1/2)/(1 + (3)(1/2)))]`
= `pi/2 - [tan^-1((5/2)/(5/2))]`
= `pi/2 - tan^-1(1)`
= `pi/2 - pi/4`
= `pi/4`
= R.H.S.
RELATED QUESTIONS
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of tan−1 (−1)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of cos−1`(-1/2)` is ______
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
tan-1 (-1)
Find the principal value of the following:
cosec-1 (2)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of cosec–1(– 1)
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of y = cos–1(x2 – 4) is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
When `"x" = "x"/2`, then tan x is ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
3 tan-1 a is equal to ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Domain and Rariges of cos–1 is:-
what is the value of `cos^-1 (cos (13pi)/6)`
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If cos–1 x > sin–1 x, then ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1