Advertisements
Advertisements
Question
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Solution
L.H.S. = `tan^-1(1/2) + tan^-1(1/3)`
= `tan^-1 [(1/2 + 1/3)/(1 - 1/2 * 1/3)]` ...since `1/2 > 0, 1/3 > 0` and `(1/2)(1/3) < 1`
= `tan ^-1 ((5/6)/(1 - 1/6))`
= `tan^-1((5/6)/(5/6))`
= tan-1(1)
= `tan^-1(tan pi/4)`
= `pi/(4)`
= R.H.S.
RELATED QUESTIONS
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Find the principal value of the following:
tan-1 (-1)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Evaluate:
`cos[tan^-1 (3/4)]`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of cosec–1(– 1)
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
Which of the following function has period 2?
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of the function y = sin–1 (– x2) is ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Domain and Rariges of cos–1 is:-
Find the principal value of `tan^-1 (sqrt(3))`
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
what is the value of `cos^-1 (cos (13pi)/6)`
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If f'(x) = x–1, then find f(x)
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If sin–1x – cos–1x = `π/6`, then x = ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
Solve for x:
5tan–1x + 3cot–1x = 2π
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.