English

Prove the following: tan-1(12)+tan-1(13)=π4 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`

Sum

Solution

L.H.S. = `tan^-1(1/2) + tan^-1(1/3)`

= `tan^-1 [(1/2 + 1/3)/(1 - 1/2 * 1/3)]`    ...since `1/2 > 0, 1/3 > 0` and `(1/2)(1/3) < 1`

= `tan ^-1 ((5/6)/(1 - 1/6))`

= `tan^-1((5/6)/(5/6))`

= tan-1(1)

= `tan^-1(tan  pi/4)`

= `pi/(4)`

= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.3 [Page 103]

RELATED QUESTIONS

Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of `cot^(-1) (sqrt3)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the principal value of `cosec^(-1)(-sqrt2)`


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


Find the principal value of the following: cos- 1`(-1/2)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Find the principal solutions of the following equation:

cot 2θ = 0.


sin−1x − cos−1x = `pi/6`, then x = ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Find the principal value of the following:

tan-1 (-1)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Evaluate:

`cos[tan^-1 (3/4)]`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of cosec–1(– 1)


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


The principle solutions of equation tan θ = -1 are ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


Which of the following function has period 2?


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of the function y = sin–1 (– x2) is ______.


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.


`"cos"^-1 1/2 + 2  "sin"^-1  1/2` is equal to ____________.


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


Domain and Rariges of cos–1 is:-


Find the principal value of `tan^-1 (sqrt(3))`


`sin(tan^-1x), |x| < 1` is equal to


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


what is the value of `cos^-1 (cos  (13pi)/6)`


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


What is the values of `cos^-1 (cos  (7pi)/6)`


If f'(x) = x–1, then find f(x)


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


sin [cot–1 (cos (tan–1 x))] = ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


If sin–1x – cos–1x = `π/6`, then x = ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Solve for x:

5tan–1x + 3cot–1x = 2π


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×