Advertisements
Advertisements
Question
Find the principal value of the following:
tan-1 (-1)
Solution
tan-1 (-1) = y
(-1) = tan y where `(-pi)/2 <= y <= pi/2`
(or) tan y = – 1
tan y = tan`(- pi/4) (because tan pi/4 = 1)`
∴ y = `- pi/4 [because tan(- pi/4) = - tan(pi/4) = - 1]`
∴ The principal value of tan-1 (-1) is `- pi/4`.
APPEARS IN
RELATED QUESTIONS
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.