Advertisements
Advertisements
Question
Find the principal value of the following:
`sin^-1 (- 1/2)`
Solution
`sin^-1 (- 1/2)`
Let `sin^-1 (- 1/2)` = y
`["where" (-pi)/2 <= y <= pi/2]`
`- 1/2` = sin y
sin y = `- 1/2` ...`(∵ sin pi/6 = 1/2)`
`sin y = sin(- pi/6) ...[∵ sin (- pi/6) = - sin (pi/6)]`
∴ y = `- pi/6`
∴ The principal value of sin-1 `(- 1/2) "is" - pi/6`
APPEARS IN
RELATED QUESTIONS
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of the following: cosec- 1(2)
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
`tan^-1(tan (7pi)/6)` = ______
Evaluate:
`sin[cos^-1 (3/5)]`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
The domain of y = cos–1(x2 – 4) is ______.
Domain and Rariges of cos–1 is:-
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)