Advertisements
Advertisements
Question
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
Solution
Given that cosec A + sec A = cosec B + sec B
`1/(sin "A") + 1/(cos "A") = 1/(sin "B") + 1/(cos "A")`
`1/(sin "A") - 1/(sin "B") = 1/(cos "B") - 1/1/(cos "A")`
Arrange T-ratios of the sine and cosine in the separate side
∴ `(sin "B" - sin "A")/(sin "A" sin "B") = (cos "A" - cos "B")/(cos "A" cos "B")`
∴ `(sin "B" - sin "A")/(cos "A" - cos "B")` = tan A tan B
`[∵ sin "C" - sin "D" = 2 cos (("C + D")/2) sin (("C - D")/2)]`
∴ `(2 cos (("B + A")/2) sin (("B - A")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `(2 cos (("A + B")/2) sin (("- A + B")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `(-2 cos (("A + B")/2) sin (("A - B")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `cot (("A + B")/2)` = tan A tan B
APPEARS IN
RELATED QUESTIONS
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.