Advertisements
Advertisements
Question
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
Solution
In A.P. commom difference are equal, namely t2 – t1 = t3 – t2
sin(z + x – y) – sin(y + z – x) = sin(x + y – z) – sin(z + x – y)
`=> 2 cos (((z + x - y) + (y + z - x))/2) sin (((z + x - y) - (y + z - x))/2)`
`[∵ sin "C" - sin "D" = 2 cos (("C + D")/2) sin (("C - D")/2)]`
`=> 2 cos (((x + y - z) + (z + x - y))/2) sin (((x + y - z) - (z + x - y))/2)`
`=> 2 cos ((z + x - y + z - x)/2) sin ((z + x - y - y - z + x)/2)`
`=> 2 cos (x + y - z + z + x - y)/2 sin (x + y - z - z - x + y)`
= `2 cos ((2z)/2) sin ((2x - 2y)/2) = 2 cos ((2x)/2) sin ((2y - 2z)/2)`
cos z sin (x – y) = cos x sin (y – z)
cos z (sin x cos y – cos x sin y) = cos x (sin y cos z – cos y sin z)
Divide bothsides by cos x cos y cos z we get
∴ `(cos z (sin x cos y – cos x sin y))/(cos x cos y cos z) = (cos x (sin y cos z – cos y sin z))/(cos x cos y cos z)`
∴ `(sin x cos y – cos x sin y)/(cos x cos y) = (sin y cos z – cos y sin z)/(cos y cos z)`
∴ `(sin x cos y)/(cos x cos y) - (cos x sin y)/(cos x cos y) = (sin y cos z)/(cos y cos z) - (cos y sin z)/(cos y cos z)`
∴ `(sin x)/(cos x) - (sin y)/(cos y) = (sin y)/(cos y) - (sin z)/(cos z)`
tan x – tan y = tan y – tan z
Multiply both sides by (-1) we get,
tan y – tan x = tan z – tan y
This means tan x, tan y, and tan z are in A.P.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.