Advertisements
Advertisements
प्रश्न
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
उत्तर
In A.P. commom difference are equal, namely t2 – t1 = t3 – t2
sin(z + x – y) – sin(y + z – x) = sin(x + y – z) – sin(z + x – y)
`=> 2 cos (((z + x - y) + (y + z - x))/2) sin (((z + x - y) - (y + z - x))/2)`
`[∵ sin "C" - sin "D" = 2 cos (("C + D")/2) sin (("C - D")/2)]`
`=> 2 cos (((x + y - z) + (z + x - y))/2) sin (((x + y - z) - (z + x - y))/2)`
`=> 2 cos ((z + x - y + z - x)/2) sin ((z + x - y - y - z + x)/2)`
`=> 2 cos (x + y - z + z + x - y)/2 sin (x + y - z - z - x + y)`
= `2 cos ((2z)/2) sin ((2x - 2y)/2) = 2 cos ((2x)/2) sin ((2y - 2z)/2)`
cos z sin (x – y) = cos x sin (y – z)
cos z (sin x cos y – cos x sin y) = cos x (sin y cos z – cos y sin z)
Divide bothsides by cos x cos y cos z we get
∴ `(cos z (sin x cos y – cos x sin y))/(cos x cos y cos z) = (cos x (sin y cos z – cos y sin z))/(cos x cos y cos z)`
∴ `(sin x cos y – cos x sin y)/(cos x cos y) = (sin y cos z – cos y sin z)/(cos y cos z)`
∴ `(sin x cos y)/(cos x cos y) - (cos x sin y)/(cos x cos y) = (sin y cos z)/(cos y cos z) - (cos y sin z)/(cos y cos z)`
∴ `(sin x)/(cos x) - (sin y)/(cos y) = (sin y)/(cos y) - (sin z)/(cos z)`
tan x – tan y = tan y – tan z
Multiply both sides by (-1) we get,
tan y – tan x = tan z – tan y
This means tan x, tan y, and tan z are in A.P.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that :
Show that :
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A