Advertisements
Advertisements
प्रश्न
Prove that:
cos 80° + cos 40° − cos 20° = 0
उत्तर
Consider LHS:
\[\cos 80^\circ + \cos 40^\circ - \cos 20^\circ\]
\[ = 2\cos \left( \frac{80^\circ + 40^\circ}{2} \right) \cos \left( \frac{80^\circ - 40^\circ}{2} \right) - \cos 20^\circ \left\{ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\cos 60^\circ \cos 20^\circ - \cos 20^\circ\]
\[ = 2 \times \frac{1}{2}\cos 20^\circ - \cos20^\circ\]
\[ = \cos 20^\circ - \cos 20^\circ\]
\[ = 0\]
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Show that :
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.