Advertisements
Advertisements
प्रश्न
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
उत्तर
Consider LHS:
\[ = \sin 3A + \sin 2A - \sin A\]
\[ = 2\sin \left( \frac{3A + 2A}{2} \right) cos \left( \frac{3A - 2A}{2} \right) - \sin A \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\sin \left( \frac{5}{2}A \right) \cos \left( \frac{A}{2} \right) - \sin A\]
\[= 2\sin \left( \frac{5}{2}A \right) cos \left( \frac{A}{2} \right) - 2\sin \frac{A}{2} \cos \frac{A}{2}\]
\[ = 2\cos \left( \frac{A}{2} \right) \left\{ \sin \frac{5}{2}A - \sin \frac{A}{2} \right\}\]
\[ = 2\cos \left( \frac{A}{2} \right) \times 2\sin \left( \frac{\frac{5}{2}A - \frac{A}{2}}{2} \right) \cos \left( \frac{\frac{5}{2}A + \frac{A}{2}}{2} \right)\]
\[ = 4\cos \left( \frac{A}{2} \right) \sin A \cos \left( \frac{3}{2}A \right)\]
\[ = 4\sin A \cos$\left( \frac{A}{2} \right)$\cos \left( \frac{3}{2}A \right)\]
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 50° − sin 70° + sin 10° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.