Advertisements
Advertisements
प्रश्न
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.
उत्तर
secx cos5x = –1
⇒ cos5x = `(-1)/secx`
We know that
secx = `1/cosx`
⇒ cos5x + cosx = 0
By transformation formula of T-ratios,
We know that
cosA + cosB = `2cos(("A" + "B")/2) cos(("A" - "B")/2)`
⇒ `2cos((5x + x)/2) cos((5x - x)/2)` = 0
⇒ 2cos3x cos2x = 0
⇒ cos3x = 0 or cos2x = 0
∵ 0 < x ≤ `pi/2`
Therefore, 0 < 2x ≤ π or 0 < 3x ≤ `(3pi)/2`
Therefore, 2x = `pi/2`
⇒ x = `pi/4`
3x = `pi/2`
⇒ x = `pi/6`
Or 3x = `(3pi)/2`
⇒ x = `pi/2`
Hence, x = `pi/6, pi/4, pi/2`.
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.