Advertisements
Advertisements
प्रश्न
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
उत्तर
LHS = (cos α – cos β)2 + (sin α – sin β)2
`= (- 2 sin (alpha + beta)/2 sin (alpha - beta)/2)^2 + (2 cos (alpha + beta)/2 sin (alpha - beta)/2)^2`
`= 4 sin^2 (alpha + beta)/2 sin^2 (alpha - beta)/2 + 4 cos^2 (alpha + beta)/2 sin^2 (alpha - beta)/2`
`= 4 sin^2 (alpha - beta)/2 [sin^2 (alpha + beta)/2 + cos^2 (alpha + beta)/2]`
`= 4 sin^2 (alpha - beta)/2` = RHS
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: