हिंदी

If Cos a = M Cos B, Then Write the Value of Cot a + B 2 Cot a − B 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 
योग

उत्तर

Given:
\[\cos A = m\cos B\]
\[ \Rightarrow \frac{\cos A}{\cos B} = \frac{m}{1}\]
\[ \Rightarrow \frac{\cos A + \cos B}{\cos A - \cos B} = \frac{m + 1}{m - 1}\]
\[ \Rightarrow \frac{2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)}{- 2\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)} = \frac{m + 1}{m - 1} \left[ \because \cos A + \cos B = 2\cos\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)\text{ and }\cos A - \cos B = - 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ \Rightarrow \frac{\cos\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- \sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)} = \frac{m + 1}{m - 1} \]
\[ \Rightarrow -\cot\left( \frac{A + B}{2} \right)\cot\left( \frac{A - B}{2} \right)=\frac{m + 1}{m - 1}\]

\[\Rightarrow\cot\left( \frac{A + B}{2} \right)\cot\left( \frac{A - B}{2} \right)=\frac{1 + m}{1 - m}\]
shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.3 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.3 | Q 4 | पृष्ठ २०

संबंधित प्रश्न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


cos 40° + cos 80° + cos 160° + cos 240° =


sin 163° cos 347° + sin 73° sin 167° =


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Evaluate-

cos 20° + cos 100° + cos 140°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×