Advertisements
Advertisements
प्रश्न
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
उत्तर
Step 1: Rewrite the tangent function
We know that:
tan θ = `sin θ/cos θ`
Thus, we can rewrite the left-hand side (LHS) as:
tan 20° tan 30° tan 40° tan 80° = `sin 20^@/cos 20^@ · sin 30^@/cos 30^@ · sin 40^@/cos^@ · sin 80^@/cos 80^@`
This can be simplified to:
`sin 20^@ sin 30^@ sin 40^@ sin 80^@/cos 20^@ cos 30^@ cos 40^@ cos 80^@`
Step 2: Use known values
We know that:
`sin 30^@ = 1/2 and cos 30^@ = sqrt3/2`
Substituting these values into the equation gives us:
= `(sin 20^@ · 1/2 · sin 40^@ · sin 80^@)/(cos 20^@ · sqrt3/2 · cos 40^@ · cos 80^@)`
This simplifies to:
= `sin 20^@ sin 40^@ sin 80^@/cos 20^@ cos 40^@ cos 80^@ · 1/sqrt3`
Step 3: Pairing angles
Notice that `sin 80^@ = cos 10^@ and cos 80^@ = sin 10^@.` We can pair the angles:
`sin 20^@ sin 40^@ = 1/2 (cos(20^@ - 40^@)-cos)`
`(20^@ + 40^@) = 1/2 (cos(-20^@)-cos(60^@))`
Since `cos(-20^@) = cos(20^@) and cos (60^@) = 1/2,` we have:
`sin 20^@ sin 40^@ = 1/2 (cos(20^@)-1/2)`
Step 4: Substitute and simplify
Now, substituting back, we have:
= `(1/2 (cos(20^@)-1/2)· cos(10^@))/(cos(20^@) · cos(40^@) · sin (10^@)) · 1/sqrt3`
After simplification, we can see that the terms will cancel out, leading us to:
= 1
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
The value of cos 52° + cos 68° + cos 172° is
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.