Advertisements
Advertisements
प्रश्न
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
उत्तर
\[\frac{1}{\sin A} + \frac{1}{\cos A} = \frac{1}{\sin B} + \frac{1}{\cos B}\]
\[ \Rightarrow \frac{1}{\sin A} - \frac{1}{\sin B} = \frac{1}{\cos B} - \frac{1}{\cos A}\]
\[ \Rightarrow \frac{\sin B - \sin A}{\sin A\sin B} = \frac{\cos A - \cos B}{\cos A\cos B}\]
\[ \Rightarrow \frac{\sin B - \sin A}{\cos A - \cos B} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{2\sin\left( \frac{B - A}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- 2\sin\left( \frac{A - B}{2} \right)\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{- \sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- \sin\left( \frac{A - B}{2} \right)\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{\cos\left( \frac{A + B}{2} \right)}{\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \cot\left( \frac{A + B}{2} \right) = \tan A\tan B\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
cos 35° + cos 85° + cos 155° =
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate-
cos 20° + cos 100° + cos 140°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.