हिंदी

If Cosec a + Sec a = Cosec B + Sec B, Prove that Tan a Tan B = Cot a + B 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].

योग

उत्तर

\[\frac{1}{\sin A} + \frac{1}{\cos A} = \frac{1}{\sin B} + \frac{1}{\cos B}\]
\[ \Rightarrow \frac{1}{\sin A} - \frac{1}{\sin B} = \frac{1}{\cos B} - \frac{1}{\cos A}\]
\[ \Rightarrow \frac{\sin B - \sin A}{\sin A\sin B} = \frac{\cos A - \cos B}{\cos A\cos B}\]
\[ \Rightarrow \frac{\sin B - \sin A}{\cos A - \cos B} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{2\sin\left( \frac{B - A}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- 2\sin\left( \frac{A - B}{2} \right)\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{- \sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- \sin\left( \frac{A - B}{2} \right)\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{\cos\left( \frac{A + B}{2} \right)}{\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \cot\left( \frac{A + B}{2} \right) = \tan A\tan B\]
Hence proved.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 11 | पृष्ठ १९

संबंधित प्रश्न

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


cos 35° + cos 85° + cos 155° =


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate-

cos 20° + cos 100° + cos 140°


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×